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Abstract

Purpose: Myogenic response is the ability of smooth muscle cells lining the vascu-
lar wall to react to changing intravascular pressure: increasing pressure normally
induces contraction whereas decreasing pressure leads to dilatation. Experimental
studies show that the intensity of the myogenic response is di�erent in arteriolar
vessels of di�erent radii: smaller arterioles react relatively more intensely, but over
a more narrow range of pressures, than larger arterioles. In a network of vessels,
this gives rise to amyogenic response gradient. The physiological significance of this
gradient is, nonetheless, debated. Our purpose is to investigate the dynamical char-
acteristics of microvascular networks with a myogenic response gradient by means
of mathematical modeling.
Methods: We present a mathematical vascular network model which includes a de-
tailed description of vessel wall mechanics and the myogenic response gradient. We
focus on the influence of this gradient on short-term network dynamics. We perform
a series of numerical simulations in both symmetrical and asymmetrical vascular
trees in which the individual vessel is given a realistic morphology, i.e., relative wall
thickness is smaller in larger vessels.
Results: Our main findings show that the presence of a myogenic response gradient:

1. adjusts flowandpressure in thecapillarybed toanadequate level anddampens
oscillations transmitted from upstream feeding vessels;

2. provides the network as a whole with a basal level of tone necessary for the
operation of vasomotor mechanisms other than the myogenic response; and

3. provides the system with the overall ability to autoregulate network flow
smoothly.
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Conclusion: Themathematicalmodel shows that networkswith amyogenic response
gradient present advantages regarding the physiological function of regulating flow
in a bifurcating network compared to networks without myogenic response and
passive networks.

Keywords: mathematical modeling, myogenic response, myogenic response gradi-
ent, oscillations, vascular network

1. Introduction

In recent years,mathematicalmodelinghasbecomeauseful tool for gaining adeeper
understanding of the physiological processes that a�ect blood flow regulation in vas-
cular networks. A combined description of vascular wall mechanics and network
structure that allows for subsequent simulation of the system may reveal the dy-
namical features of such networks rather than just characterizing their steady-state
behaviour.

Myogenic response is the reaction of the smooth muscle cells (SMC) encircling
the blood vessel wall to a pressure stimulus. It is normally seen as vessel wall con-
traction in response to increasing intraluminal pressure and relaxation in response to
decreasing pressure.1,2 Myogenic activity depends on stress-induced depolarization
of the SMC membrane.3 Calcium influx through voltage-operated calcium channels
(VOCC) and an increase in cytosolic calciumconcentration activate the contractile ap-
paratus, eventually leading to a change in vessel diameter.4 The myogenic response
is observed inmost vascular beds, with the reaction to a given pressure step typically
being inversely proportional to vessel size.5,6 Variations in myogenic responsiveness
are observed not only in vessels of di�erent diameter, but also in vessels of the same
diameter but belonging to di�erent vascular beds.3,7

A variety of mathematical implementations of the myogenic response8–11 and its
gradient throughout a vascular network12 have been published. However, the short-
term dynamical behaviour of a network with a myogenic gradient has, to the best of
our knowledge, not previously been subject to study.

A microvascular network can be modeled in di�erent ways. A simple approach is
tomodel a lattice of hexagons. This particular geometrical structure has been used to
investigate the role of wall shear stress in network remodeling.13,14 Vascular networks
can also be described as a circuit of resistors, with vessels in di�erent parts of the
network lumped into compartments on the basis of vessel type.15 Another common
approach is to model a network as a bifurcating tree. The advantage in this case is a
somewhat greater similaritywith the structure of a realmicrovascular network.14,16–18
Alternatively, the vascular tree structure can be derived directly from experimental
data.19,20

A gradient inmyogenic responsiveness seems to be an ubiquitous property ofmi-
crovascular networks.5. As a logical extension of previous studies, we therefore pro-
pose a short-term dynamical model of a vascular network that features detailed me-



Dynamical characteristics of microvascular networks 45

chanics of the vessel wall21 as well as a myogenic response gradient throughout the
network. We address the following questions:

1. How does a myogenic response gradient influence short-term microvascular
flow and pressure regulation?

2. Having such a gradient, how does symmetry versus asymmetry of the network
structure influence network autoregulation?

2.Mathematical model

2.1 Mechanics of the vascular wall

The mechanical model of the vascular wall has been adapted from VanBavel and
Tuna21 and modified. Model elements applied in the present simulations are sum-
marized below. All model parameters are listed in Table 1 and Table 2 (see Appendix).

As in previous papers,11,21,22 we introduce three types of stress:
1. Passive stress, σp, is generated by the connective tissue of the vascular wall,

which consists of collagen and elastin fibers.22 It depends exponentially on the tissue
strain, ε:

σp = Cp1 · (eap1·ε − 1) + Cp2 · (eap2·ε − 1), (1)

whereCp1,Cp2, ap1, and ap2 are constants of the passive stress-strain curve.
2. Active stress, σa, is a stress generated by contractile activity of the SMC. It is

proportional to the tone, Ψ, and the maximal capacity for generating active stress,
σam:

σa = Ψ · σam, (2)

σam = σamopt
· e
−

(
lref −laopt

ba

)2

, (3)

where σamopt is the peak value of σam at the SMC-length laopt, ba is a constant, and
lref is the length of the cell.

3. Cytoskeletal stress, σc, is a stress generated by the cytoskeleton during elonga-
tion of the SMC. It prevents the cell from being stretched excessively:

σc = σc0 ·
ebc

lref −lc0
lc0 − e−bc

1− e−bc
, (4)

where σc0 is a cytoskeletal stress at SMC length lc0 and bc is a constant of the SMC
length–cytoskeletal stress curve.

It is assumed that these three types of stress a�ect the vascular wall in equal pro-
portion:

CSAi = fi · wCSA, (5)
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where i = p, a, c defines the passive, active, and cytoskeletal types of stress, respec-
tively. The weighting coe�icient for each stress type is fi. CSAi is a portion of the
wall cross-sectional area,wCSA, which is a�ected by the particular type of stress.21

Hence, the mean wall stress, σ, consists of three components:

σ = σp · fp + σa · fa + σc · fc. (6)

The equilibriumwall stress, σ, is:

σ = P · ri/h, (7)

where h = wCSA/2πrm is the wall thickness with ri = rm − h/2, where rm and ri
are midwall and inner radii, respectively.

The degree of stretching of the vessel wall is expressed as the strain, ε. In this par-
ticular case, the strain is calculated as a relative change in midvessel radius from its
unloaded state, rm, slack, (i.e., the state when SMC are fully deactivated and transmu-
ral pressure is equal to zero):

ε = rm − rm, slack
rm, slack

. (8)

In a state of mechanical equilibrium, when the stress generated by the di�erent
components of the wall, σ (Eq. 6), is equal to the equilibrium wall stress, σ (Eq. 7),
the vessel radius does not change and ε is constant. Whenmechanical equilibrium is
disturbed for any reason, the time evolution of the strain, ε, is calculated as:

dε

dt
= k1 · (σ − σ), (9)

where k1 is a time constant for this process.
The vessel wall tone, Ψ, is defined as the ratio of actual active stress and maxi-

mal active stress. The tone is 0 when the vessel is fully relaxed, i.e., when the active
stress is 0, and 1 when the contractile activity of the wall SMC is maximal, i.e., when
the actual active stress is equal to themaximal active stress. As opposed to the previ-
ous formulation,21 ourmodel does not include any external constrictors and dilators,
hence, the tone is caused only by myogenic activation of the vessel wall, depending
in turn on the wall stress. The interaction of the equilibrium tone,Ψ, and the equilib-
riumwall stress, σ, is described by means of a Hill-type equation:

Ψ = σhc

σhc + σ50hc
, (10)

where σ50 is the stress at half-maximal activation and hc is the Hill coe�icient.
The temporal evolution of the tone is described as:

dΨ
dt

= k2 · (Ψ−Ψ), (11)
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where k2 is a time constant.
Although myogenic reactivity is most pronounced in small muscular arteries

and arterioles, venous vessels normally possess some tone and may react weakly
to changes in pressure.23,24 On the other hand, capillaries are normally considered
non-contractile because of the lack of SMC coating. In some cases, however, peri-
cytes covering the outer surface of the vessel may provide someweak contractility.25
Collectively, therefore, myogenic reactivity is modeled only explicitly in arterial-side
vessels, whereas venoules and capillaries are modeled as having a constant, weak
tone equal to 0.05 and 0.01, respectively.

In a microvascular network, larger upstream vessels typically display myogenic
responsiveness over a broarder pressure range, but react less forcefully to a given
pressure step compared to smaller downstream vessels. The smallest precapillary
vesselsmayhavea relativelyweakmyogenic response, nonetheless.5. Amyogenic re-
sponse gradient thatmimics this experimentally observed behaviourwas introduced
into themodel bymodifyingmodel parameterswhichdefine the shapeof passive, ac-
tive, and cytoskeletal stresses as well as equilibrium tone. We introduce the depen-
dencies of these parameters on initial vessel radius, ri0, according to the following
equations:

C ′p1 = Cp1

func1(ri0) , C
′
p2 = Cp2

func1(ri0) , (12)

σ′amopt
=

σamopt

func1(ri0) , (13)

σ′c0 = σc0
func1(ri0) , (14)

Ψ = func2(ri0, σhc) ·
σhc

σhc + σ50hc
, (15)

wherefunc1(ri0)andfunc2(ri0)areapproximating functions (Appendix). Herea�er,
thesemodified parameters are used in Equations (1), (2), (3), (4), and (10) for network
simulations.

2.2 Network properties

In thepresent formulation, a symmetricalnetwork is abifurcatingnetworkwhereeach
vessel within a given generation has the same length and radius, and where the ve-
nous side is a topological reflection of the arterial side with vessels having the same
lengths but larger radii. In contrast, an asymmetrical network is a network where two
daughter vessels arising from a stem at a given branch point may neither have the
same lengths nor the same radii. In this case, however, the venous side is a topologi-
cal reflectionof the arterial side,with corresponding vessels having the same lengths,
but larger radii.
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Experimental data26 was used in order to find relations between parent and
daughter vessel diameters, as well as between the length and diameter of the in-
dividual vessel for the human retina. These relations are summarized in Figure 1 and
are further described in Appendix Equations (17-19). We then use a probability-based
algorithm to generate the network structure as proposed by Postnov et al.,27 with the
necessary modifications to create the venous part of the tree.

Fig. 1. Approximations (black curves) and experimental data26 (gray circles) for structure gen-
eration. (Le� panel) Daughter diameter as a function of parent-vessel diameter for the arterial
tree. (Center panel) Vessel length as a function of its diameter. (Right panel) Venous diameter
compared to arteriolar diameter in the same branching level.

We have generated two networks to study the e�ects of the myogenic response
gradient and vascular structure asymmetry. Following Murray’s law for diameter, the
symmetrical vascular structure canonly have one set of arterial side diameters (D3

p =
2(D3

d), whereDp andDd are parent and daughter vessels diameter, respectively) for
the given size of the largest artery. For an asymmetrical structure, the diameter of the
first daughter vessel was calculated according to real data approximation, whereas
Murray’s law was used for the second one. Vessel length and venous side diameters
were calculated according to approximations. Both symmetrical and asymmetrical
networkswere generated using a diameter equal to 50µm for the largest arterial ves-
sel and of ≈ 8 µm for capillaries. The resulting networks consisted of 382 and 541
vessels for symmetrical and asymmetrical networks, respectively.

For each type of vessel, the initial wall thickness was included as follows:
1. Capillaries: We assume a capillary wall thickness of 0.5 µm28 and a diameter of

approximately 6 µm.
2. Arterioles: From the experimental data,29 the wall thickness of arterioles, ha, is

approximated as ha = 0.1319 ·ri+1.352 µm.
3. Venules: Similarly, from the experimental data,29 the wall thickness of venules,

hv , is approximated as hv = 0.08858·ri+1.045 µm.
Note that, for the data used to generate the networks,26 the inner radius is known

while the tone giving rise to that radius in the individual vessel is unknown. Since the
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purpose here ismerely to generate a network structure, we assume for simplicity that
the experimentally derived inner radius, ri0, at t = 0 represents the slack state of the
vessel, hence rm, slack = ri0 +h|t=0/2. This value for rm, slack was used as the initial
condition.

Although thewall dynamics of each vessel is processed independently, all vessels
influence one another through intravascular pressure. Based on the rate of change in
pressure in each node, Pn,16,30,31 can be expressed as:

C
dPn
dt

= Pcn1 − Pn
Rcv1

− Pn − Pcn2

Rcv2
− Pn − Pcn3

Rcv3
, (16)

whereC expresses the compliance of the system,R = 1/Chdr is the hemodynamical
resistance,Chdr = πr4

i /8ηl is the hemodynamical conductance where η is the blood
viscosity, indexes cn1, cn2, and cn3 correspond to the 1st, 2nd, and 3rd adjacent con-
nected nodes, indexes cv1, cv2, and cv3 correspond to the 1st, 2nd, and 3rd vessels
connected to the node in question, and where the 1st is the inlet vessel, and the 2nd
and 3rd are outlet vessels. A large value ofC corresponds to a pronounced ability of
the network to absorb rapid pressure fluctuations. In contrast, if C is small, fluctu-
ations in inlet pressure (Pin) or outlet pressure (Pout) will transmit instantaneously
throughout the network.

Before each simulation, the system was run to steady state for the current values
of controlparameters (Pin,Pout, andvascularnetworkandvessel structure). Thiswas
achievedby first solving the systemof Equation (16). Next, the systemdescribing each
individual vesselwas solved for theobtainednodepressures regarding theconditions
dε/dt = 0, dΨ/dt = 0, and dΩ/dt = 0. Node pressures were then recalculated and so
forth. Iterationswere repeateduntil the above conditionwas fulfilled (relative change
less than 1·10−10 per iteration round).

3.Network properties: simulation results

3.1 Myogenic response

We simulate three di�erent situations (Fig. 2) and display vessel size as the relative
radius, i.e., rm/rm,slack for vessels of di�erent type and diameter. In all cases, Pin
and Pout are increased symmetrically in steps of 1 Pa/s over 20 000 s starting from
0.5 kPa:

1. Passive model (Fig. 2a): For the passive model, the tone in vessels was set to
0.00001. In response to an increase in transmural pressure, all vessels display similar
behavior, characterized by passive distension.

2. Model without amyogenic response gradient (Fig. 2b): Approximating functions
func1(ri0) and func2(ri0) are equal to 1.0. Thedi�erence in thepressure range char-
acterizing the curves in this situation is therefore due only to the di�erences in vessel
morphology and not to the variable sensitivity of SMC to circumferential wall stress.
Again, venous vessels and capillaries dilate with increasing pressure due to absence
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of an active myogenic response. Note that the largest vessel (No. 1 in Fig. 2, with a
radius of 80 µm) in this situation has the shortest active range. This is caused by the
relative wall thickness being smaller in larger vessels. An increase in intravascular
pressure will therefore cause a faster increase in circumferential stress, and hence, in
activation, the larger the vessel. A�er maximal activation is reached, the vessel will
experience forced dilation following a further increase in pressure.

3. Model with amyogenic response gradient (Fig. 2c): Themaximummyogenic re-
sponse is displayed by arterioles with a radius of 22 µm, while for smaller and larger
arteries the response is less pronounced. Smaller vessels dilate earlier than large
ones. As stated before, venous vessels and capillaries show distension in response
to increasing pressure.

3.2 Filtration

To study the ability of amicrovascular network to filtrate pressure alterations in rela-
tion to the resulting flow and pressure at the capillary level, we used blood pressure
data from a rat aorta as the inlet pressure in the model.

In brief, arterial blood pressure was continuously recorded in a conscious, freely
moving male Sprague Dawley rat (Taconic Biosciences, Inc., Ejby, Denmark) with a
radiotelemetric transmitter. The transmitter (model PA-C40; Data Science Interna-
tional, St. Paul, MN) was surgically implanted into the abdominal aorta of the rat at
least ten days prior to data collection, with the pressure-sensing catheter placed just
below the renal arteries. Blood pressure was collected with a frequency of 500 Hz.

For the present purpose, we selected a single continuous recording of around 30
minutes taken during the night – the active period for nocturnal animals – when ar-
terial blood pressure level fluctuations are more pronounced than in the daytime.
Since the experimental data was obtained from the aorta but the present model is
concerned with much smaller vessels, a rescaling was performed to reach a realistic
network inlet pressure (corresponding to the physiological pressure of an arteriole
around 160 microns in diameter). The scaling coe�icient was calculated as the ratio
between the average pressure observed in the experiment and expected inlet pres-
sure of the network (Pin = 7 kPa). Each pressure value in the time series was divided
by this coe�icient to rescale the experimental signal while keeping its shape.

As discussed previously (Fig. 2), we consider three types of models with di�erent
myogenic responsiveness and compare their filtering properties (Fig. 3). In all cases,
network outlet pressure was kept constant at (Pout = 1.7 kPa). Figure 3a shows the
scaled time series.

In the case of a completely passive network (Fig. 3b), the vessels stand distended
at all pressures derived from the pressure time series, with the transmural pressure
being carried mainly by the stretched passive elastic material of the wall. Pressure
fluctuations have therefore relatively little e�ect on radius, giving the network an
overall "stable" appearance. However, the passive network does not shield the capil-
lary bed from hyperperfusion and a potentially deleterious pressure.
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Fig. 2. The response of vessels of di�erent diameter and type to increasing pressure. (a)Passive
system, (b)model without a myogenic response gradient, and (c)model with a myogenic re-
sponse gradient. Pin andPout are increased symmetrically from 500 Pa to 20.5 kPa in steps of
1 Pa. Di�erent colors depict arterial vessels (red), venular vessels (blue), and capillaries (green).
1: ri0 = 80 µm, 2: ri0 = 38.8 µm, 3: ri0 = 18.6 µm, 4: ri0 = 9.6 µm, 5: ri0 = 5.65 µm, 6: ri0 =
3.9 µm.
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Fig. 3. Relative radii in a 382-vessel symmetrical network. (a) Rescaled network inlet pressure
based on experimental data from rat aorta, (b) Passive network, (c) network without a myo-
genic response gradient, and (d) network with a myogenic response gradient. Di�erent colors
indicate arteriolar vessels (red), venular vessels (blue) andcapillaries (green). 1: Largest arterial
ri0 = 50 and 39 µm that dilate earlier than 2: smaller vessels.
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In the network without a myogenic gradient the situation is somewhat di�erent
(Fig. 3c). As indicated, the first two generations of vessels have experienced forced
dilatation despite maximal activation, whereas generations of vessels with smaller
diameters are constricted. Due to this profound constriction, they have a shielding
e�ect on the downstream network.

Figure 3d shows the behavior of di�erent network vessels in the presence of a
myogenic response gradient. In this case, the whole arteriolar network participates
both in the dampening of pressure fluctuations as in the regulation of downstream
pressure.

To further investigate howmyogenic properties influence network filtration prop-
erties, a Fourier analysis (fast Fourier transform, FFT) is applied to the flow in selected
vessels. The resulting power spectra shown in Figure 4 provide information about
the distribution of the signal energy, i.e., amplitude of oscillations as a function of
frequencies.32

Note that, in contrast to the other panels in Figure 4, Figure 4a is a FFT of the inlet
pressure signal shown in Figure 3a, not one of flow. There are a fewwell-pronounced
peaks at 0.36 Hz, 1-1.7 Hz, 5 Hz, 10 Hz and 15 Hz in the input signal which are also
reflected in the flow signal, especially from the largest arteries of the network (Fig. 4b
and Fig. 4c). Low-frequency oscillations (0.36 Hz) possibly reflect Mayer waves. It
is known that the 5 Hz peak is associated with the pulse wave frequency. The next
doubled and tripled frequencies are harmonics of the pulse wave frequency. These
peaks decrease rapidly in the power spectrum for smaller arterioles, disappearing
altogether in the venous vessels. Only the low-frequency oscillations persist on the
venous side of the network. Thus, independently of the myogenic properties, the
system acts as a low-pass filter.

Inspection of the curves, however, reveals some di�erences. At the level of the
larger arterioles, having a myogenic response gradient provides a stronger dampen-
ing e�ect on oscillations in flow throughout the frequency range compared to that
of the other two networks. At the postcapillary level, the models with and without
a myogenic response seem to display similar e�iciency. Passive networks have the
worst filtering properties on all levels.

3.3 Myogenic response gradient as a protectivemechanism

In Figure 5we compare the behaviour of the threemodelswith di�erentmyogenic re-
sponsiveness (passive, equal maximal, or gradient) along the network. The le� side
of the figure represents the symmetrical network; the right side represents the asym-
metrical case. Note that the asymmetrical network has more vessels than the sym-
metrical network (541 versus 382, respectively). This is caused by symmetry, which in
turn minimizes the number of vessels.

To investigate their autoregulatory properties as a whole, the networks are ex-
posed to a ramping inlet pressure while the outlet pressure is kept constant. As ex-
pected, in completely passive networks blood flow rises in almost linear proportion
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Fig. 4. Log-log plots of power spectra for experimental inlet pressure (purple) and for flow time
series in di�erent vessels in the passive network (black), the network with equal and maximal
myogenic response (gray), and the network with a myogenic response gradient (yellow).

to increases in perfusion pressure. In contrast, over a certain range of pressures, both
of the two active networks tend to maintain a more stable flow. The model with a
myogenic response displays the best flow regulation. This may be explained by the
fact that, in themodel without amyogenic gradient, large vessels dilate first, leading
to a rapid increase in flow.

Comparing the autoregulatory properties of symmetrical versus asymmetrical
networks, asymmetry leads to even better regulation for all the networks, including
the passive one. It is caused by the system having more vessels, and consequently,
larger resistance and better flexibility in terms of myogenically-governed blood flow
control.

4.Discussion

Myogenic response is a complex adjusting mechanism which regulates vessel wall
tone in response to the stretching of SMC due to changing intravascular pressure.
Given that our model is based on vascular wall mechanics rather than cellular physi-
ology,weare able to introduce themyogenic response and its gradient only bymeans
ofmathematical descriptive formulation, reproducing themyogenic response and its
gradient in a pseudo steady state (Fig. 2c).

It is known that themyogenic response gradient not only increases with decreas-
ing arterial diameter, decreasing again at the smallest arterioles, but also regulates
vessel wall tone within di�erent pressure ranges throughout the arterial network.4
Thus, finding the correct myogenic response gradient formulation, one which takes
into account these features, is no trivial task. A desirable gradient was achieved by
modifying all three types of vessel wall stresses.
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Fig. 5. Comparison of auto-regulatory features of a symmetrical network (le�) and asymmet-
rical networks (right). The networks are exposed to a ramping inlet pressure of 1.7 to 22 kPa
in steps of 10 Pa. Outlet pressure is kept constant at 1.7 kPa. Curves are shown for the three
models: passive (black), without a myogenic response gradient (gray), and with a myogenic
response gradient (yellow).

The modification of SMC sensitivity to stress influences active stress develop-
ment while SMC contract and seems to be a natural mechanism that allows the
emergence of the myogenic response gradient.The modification of passive and cy-
toskeletal stresses is also included in thenetworkwith amyogenic response gradient.
However, at a given pressure range, while arterioles show significantmyogenic activ-
ity, most of the total stress in the network will be generated by contraction of SMC.
Hence, it is possible to compare a passive network and a network without myogenic
response gradient, where these modifications are not included, with a myogenic re-
sponse gradient network where the impact of cytoskeletal and passive stress is less
than than the impact of active stress. The impact of the cytoskeletal and passive
stress components becomes higher when vessels are forced dilated. For this rea-
son, we find that the present mathematical formulation of the myogenic response
gradient is reasonable at the moment, although it shall be improved in the future.

Our main findings were:
1. Networks with a realistic distribution of the relative wall thickness reacted in-

adequately to changes in perfusion pressure if all vessels had the same sensitivity
to wall stress and acted with the same force development (i.e., the model without a
myogenic response gradient).

2. A gradient in stress sensitivity allowing larger upstream vessels to react less
vigorously but over abroader pressure range compared to smaller,moredownstream
vessels was associated with a physiologically realistic behavior where the vessels of
the arteriolar network acted concertedly to changes in pressure.

Weobserved that thenetwork is able todampenoscillations inall cases, including
in the completeabsenceof tone. Thereare several reasons for this. First, for the calcu-
lation of node pressures, a formulation derived from the classical wind-kessel vessel
model was applied (Eq. 16). This allows for a transient volume change in a node fol-
lowing a change in pressure. This "reservoir" function introduces a dampening e�ect
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on the pressure oscillations that follow from fluctuations in perfusion pressure. In
this formulation, a step change in inlet pressure will propagate throughout the net-
work at a rate determined by compliance. Secondly, as outlet pressure is fixed, the
network is under all circumstances forced to reduce pressure along the di�erent flow
paths to eventually match the outflow pressure regardless of thematerial properties
of the vessels. Taken together, we therefore expected, and indeed found, that the
network dampens oscillations in inlet pressure both in the complete absence of tone
and under the two di�erent kinds of myogenic reactivity. The e�iciency of this pro-
cess varies, however, with the passive network being the least e�icient of all. For the
two kinds of myogenic reactivity, the one without a myogenic response gradient ap-
pears to dampen oscillations at the capillary level as e�iciently as the model with a
myogenic response gradient. This is due to an inadequate response where the most
upstreamvessels experience forceddilation and the precapillary vessels are in a state
of profound constriction. Hence, in the present formulation, the networkwith amyo-
genic response gradient exerts the most adequate response (Fig. 3-Fig. 4).

Amain functionofmicrocirculation is not only its ability todeliver a graded flow in
response to the changing metabolic needs of surrounding tissues, but also to main-
tain a stable flow in the face of fluctuating perfusion pressure. In that context, the
present analysis points to a fundamental problem when the network lacks a myo-
genic response gradient but rather displays a uniform stress sensitivity in all vessels.
Since the walls of larger, more upstream vessels are relatively thinner,29 and since
such vessels are exposed to higher pressure due to their more upstream position,
they will, due to the law of Laplace (Eq. 7), inevitably be exposed to higher stress.
If the stress level to which they react myogenically and the force they are able to de-
velop is not adjusted accordingly, the consequences will be as shown in Figures 3-5:
upstreamvesselswill experiencehigh stress, andhence, ahigh level of activation, and
will even at moderate pressures experience forced dilation, whereas at the network
level where vessels are able to withstand the pressure they will be in a state of deep
constriction. This behavior is not compatible with either a graded regulation of flow
or a smooth reaction to an increase in perfusion pressure (Fig. 5). Besides, since the
ability of the SMC to develop force is a bell-shaped function of SMC length, the vessel
is at risk of getting locked up in the dilated state and remain there even when pres-
sure is lowered, simply because maximal force development is smaller and stress is
larger themore stretched the vessel is. On theother hand, thepresenceof amyogenic
response gradient circumvents these problems. In that case, the stress optimum as
regards the operation of the individual vessel is matched to the physiological pres-
sure and vascular anatomy prevailing at that position in the network. Larger, more
upstream vessels exposed to a higher average pressure and with a relatively thinner
wall must operate at a higher stress level. Such vessels also generally display myo-
genic reactivity over a broader pressure range,5 which also fits with these vessels be-
ing exposed to the largest pressure fluctuations. Due to the action of these upstream
vessels, more downstream vessels receive a reduced pressure with dampened oscil-
lations, and hence can operate over amore narrow pressure range but with a steeper
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slope on the myogenic curve to e�iciently fine tune pressure and flow as the blood
approaches the capillary bed.

On a network level, the autoregulation curve therefore becomes smooth, and the
ability to react to stimuli other thanpressure, e.g., changes inmetabolism,will remain
intact over a broad range of pressures.

Parameter sensitivity tests for k2 (k2 = 0.0075, 0.0375, 0.375, and 0.75) and C (C =
2500, 3000, 30000)didnot showsignificantlydi�erent results, except expectedquan-
titative changes in filtration properties. WhenC is set to values below 2500, the sys-
tem becomes unstable.

In conclusion, the network with a myogenic gradient shows advantages regard-
ing the physiological function of regulating flow in a bifurcating network. The whole
arteriolar network participates in this regulation, with each vessel operating around
a pressure that corresponds to its position in the network. The flow-autoregulation
curve therefore becomes smooth and the individual vessel is not exposed to exces-
sive stress. At the same time, with this kind of reactivity, the network avoids the risk
of upstream closure and/or forced dilation which, in relation to tissue metabolism,
potentially leads to inappropriate flow.
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Appendix

Approximating functions used for the generation of symmetrical and asymmetrical
vascular networks:

1. Dependence of daughter vessel diameter ddaug onparent vessel diameter dpar:

ddaug = p11 · d2
par + p12 · dpar + p13, (17)

where p11 = -0.000164 , p12 = 0.4442 , p13 = 3.916 . dpar and ddaug aremeasured
in µm.

2. Dependence of vessel length l on vessel diameter d:

l = p21 · d4 + p22 · d3 + p23 · d2 + p24 · d+ p25

d2 + q21 + q22
, (18)

where p21 = -0.002145, p22 = 1.307, p23 = 326.5, p24 = -3970, p25 = 1.587e+04, q21
= 20.07, q22 = -148.9. l and d are measured in µm.
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Table 1. Table of default parameters
Parameter Value Units
µ 0.0035 Pa · s
C 3 ·10−15 m3/Pa
fp, fa and fc 1/3 -
Cp∗1 5.5 ·104 N/m2

ap1 1.5 -
Cp∗2 0.0186 N/m2

ap2 24 -
lref 80 ·10−6 m
laopt 1.0618 ·10−4 m
σ∗amopt

2.5 ·105 N/m2

ba 4.5868 ·10−5 m
lc0 1.1892 ·10−4 m
σ∗c0 2.5 ·105 N/m2

bc 30 1/m
σ50 3 ·104 N/m2

hc 3 -
k1 15 ·10−6 m2/(N · s)
k2 0.075 1/s
k3 56.25 1/(m · s)
Ψv 0.05 -
Ψc 0.01 -
N 211 -

3. Dependence of venous diameter dv on corresponding arterial diameter da:

dv = p31 · d2
a + p32 · da + p33, (19)

where p11 =-0.0005603 , p12 = 1.127 , p13 = 1.335 . da and dv aremeasured inµm.

Approximating functions used to generate the myogenic response gradient:

func1(ri0) =
√
ri0 · e

−ri0
par1 · par2, (20)

func2(ri0) =
√
ri0 · e

−ri0
par1 · par2 · (σhc + σ3

50)
σhc + σ3

50
par3·e−par4·ri0 +par5

, (21)

where ri0 is initial inner vessel radius, par1, par2, par3, par4, andpar5 areparameters
that define the shapes of the curve func1 and the surface func2.



Dynamical characteristics of microvascular networks 59

Table 2. Parameters of the approximating functions
Parameter Value Units
par1 45 µm
par2 0.28 1/√µm
par3 1.16 -
par4 0.08 1/µm
par5 0.182 -
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