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Abstract

Aim: To evaluate a new algorithm to detect the optic disc in retinal fundus images on 
a number of publicly available datasets. Optic disc detection is an important first step 
in many automated algorithms, either to be masked out of future processing or for use 
in optic disc-related disease such as glaucoma and papilledema.
Methods: We propose a new method for optic disc detection that converts the retinal 
image into a graph and exploits vessel enhancement methods to calculate edge 
weights in finding the shortest path between pairs of points on the periphery of the 
image. The line segment with the maximum number of ‘shortest paths’ is considered 
the optic disc location, with refinement from a combination template matching 
approach in the found region. The method was tested on three publicly available 
datasets: DRIVE, DIARETDB1, and Messidor consisting of 40, 89, and 1200 images, 
respectively. All images were acquired at a 45°-50° field of view. 
Results: The method achieves an accuracy of 100, 98.88, and 99.42% on the DRIVE, 
DIARETDB1, and Messidor databases, respectively. 
Conclusions: The method performs as well or better than state-of-the-art methods 
on these datasets.  Processing takes an average of 32 seconds (± 1.2) to detect the 
optic disc, with 26 of those seconds used for the vessel enhancement process. The 
accuracy over a wide variety of images shows that the method is robust and would be 
optimal for retinal analysis systems that perform vessel enhancement as part of their 
processing. This would allow for optic disc and vessel segmentation to be performed 
simultaneously, saving processing time.  
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1. Introduction

Fundus imaging has been a staple in the clinical analysis of retinal diseases due 
to its simple, non-invasive visualization of the retinal vasculature.1 Studies have 
shown the correlation between changes in the retinal vasculature to vascular 
changes elsewhere in the body.2 This has made the screening and early detection 
of retinal diseases, such as hypertensive and diabetic retinopathies, an important 
and cost-effective method for preventing vision loss as well as monitoring systemic 
vascular disease.3  With the advancement of technology, automatic screening has 
become a feasible method for detecting disease and reducing the burden on the 
ophthalmologist.4  Automatic image processing and machine-learning techniques 
can detect, segment, and quantify retinal landmarks such as the retinal vasculature, 
fovea, and optic disc as well as lesions such as microaneurysms and exudates.5,6   
Automated screening systems for diabetic retinopathy have already been deployed 
in certain countries that are able to flag early signs of disease so that these people 
can be seen by an ophthalmologist before the onset of vision loss.

The optic disc (OD) is one of the most important features of the retina and 
appears as a bright, yellowish oval. The size of the OD varies among adults with 
an average of 1.88 and 1.77 mm in the vertical and horizontal diameters.7 It is the 
entrance point for blood vessels into the retina and the exit point for ganglion cell 
axons, which form the optic nerve upon leaving the eye. Detection of the OD can aid 
in the detection of other retinal landmarks, such as the fovea and retinal arcades, 
which share geometric properties with the OD.8 Furthermore, analysis of the optic 
cup-to-disc ratio can aid in the diagnosis of glaucoma,9 while analysis of the OD 
boundary can be important for swelling of the OD in papilledema.10  Masking the OD 
out of the image can also be helpful as it removes a bright area with sharp contrast 
that could be falsely detected as vasculature or pathology.

This paper presents a new method for OD detection in retinal images that converts 
the retinal image to a graph and calculates the shortest path between selected 
points in the periphery of the image using edge weights calculated from a vessel 
enhanced image. Through the calculation of several shortest paths (using Dijkstra’s 
shortest path algorithm), the algorithm is able to detect the vascular origin, and 
thus the OD location, after refinement using a combination template matching/
vertical edge detection image. Dijkstra’s shortest path algorithm has been used in 
many image processing applications,11,12 but has not been used to our knowledge 
to detect the OD in this way. The method is evaluated on three publicly available 
datasets containing a total of 1329 images of varying levels of pathology and image 
quality, and has a combined detection rate of 99.40%. These results show that the 
algorithm is robust and comparable with other state-of-the-art methods for OD 
detection.  

The paper is organized in the following way. First, a literature review of recent OD 
detection methods is conducted, followed by a ‘Methods’ section which expands 
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on the algorithm in more detail. The ‘Results’ section contains information on the 
datasets used for evaluation, examples from each dataset, and a comparison with 
other OD detection methods. This is followed by the ‘Discussion’ and ‘Conclusions’ 
sections.

2. Literature review

There have been many methods proposed in the literature for optic disc detection. 
Normally, the OD presents as the brightest region in the image. However, retinop-
athies, image quality, and normal variations can make this untrue,13 which makes 
OD localization a surprisingly difficult task that has led to many advanced meth-
odologies. Some methods have focused just on OD detection, while others also 
perform OD segmentation. A look at many of the popular and newer OD detection 
algorithms will now be discussed. For an in-depth look at earlier OD algorithms, 
please see Youssif et al. for an extensive literature review.14 Hoover and Goldbaum 
used the fuzzy convergence of vessel end points from a vessel segmented image 
to determine the convergence of blood vessels and ultimately the OD location, 
obtaining an 89% detection rate on the STARE dataset.15 Foracchia et al. fit a 
parabolic model to the main arcades in the image, with the OD location being the 
area of convergence of all vessels.16 Based on this model, the OD location is able to 
be determined even if it is not present in the image. The method achieved a 98% 
detection rate when tested on the STARE dataset. Neimeijer, Abramoff, and Van 
Ginneken used a k-nearest neighbor regressor (k-nearest neighbor regression is a 
regression technique that assigns an output value for the object in question based 
on the ‘k’ number of nearest training neighbors) with features from the original 
image and a vessel segmentation to predict the distance of each pixel in the image 
to the optic disc.17 The method achieved a 99.4% OD detection rate on an in-house 
dataset. Mahfouz et al. encoded the x and y coordinates of the OD in 1D projections 
based on certain retinal features.18 The method had a combined 97% detection 
rate on four publicly available datasets. Welfer et al. used an adaptive morpholog-
ical approach that prunes a skeletonized vessel segmentation until just the main 
arcades are present.19 The OD is localized using the intersection of the centroid 
of the skeleton and the remaining vessel arcade fragment. The method obtained 
100% and 97.75% detection rates on the DRIVE and DIARETDB1 databases. Aquino 
et al. combined three methods for OD detection (maximum difference, maximum 
variance, and a low-pass filtering method) into a voting procedure based on the 
location found in each method.20 The method obtained a 99% detection rate in the 
Messidor database. Qureshi et al. also combined OD detection algorithms using 
geometric rules.21 The methods include pyramidal decomposition, edge detection, 
entropy, Hough transform, and feature vector combination, and achieved a 100% 
and 94.02% detection rate on the DRIVE and DIARETDB1 databases, respectively. 



Table 1. Comparison of methods that have reported results on one or more of the listed 
datasets

OD Location Method DRIVE  
dataset (%)

DIARETDB1 
dataset (%)

Messidor  
dataset (%)

Sinthanayothin et al.1  1999 60 - -

Walter et al.2 (2002) 80 - -

Youssif et al.14 (2008) 100 - -

Mahfouz et al.18 (2010) 100 97.75 -

Welfer et al.19 (2010) 100 97.75 -

Aquino et al.20 (2010) - - 99

Yu et al.22 (2012) - - 99.08

Zubair et al.3 (2013) - - 98.65

Saleh et al.4 (2014) 100 - -

Yu, Ma, & Li24 (2015) 100 98.88 99.67

Abdullah et al.26 (2016) 100 100 99.25

Proposed Method 100 98.88 99.42
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Yu et al. used adaptive template matching to determine OD candidates and the final 
OD location was determined from the vessel characteristics in these regions.22 The 
method achieved a 99.08% detection rate on the Messidor dataset. Pereira et al. 
used an ant colony optimization algorithm which mimics swarm behavior as the 
ants move based on local intensity variation, achieving a 93.25% detection rate on 
the DIARETDB1 database.23 Yu, Ma, and Li employed a morphological approach on a 
combination of intensity and vessel convergence information and achieved a 99.52% 
detection rate on several publicly available datasets.24 Rahebi et al. detected the OD 
location using the firefly algorithm.25  The algorithm compares fireflies, moving the 
insects based on intensity values in the image until an optimal insect is found as the 
OD location. The method achieved a 100% and 94.38% detection rate in the DRIVE 
and DIARETDB1 databases, respectively. Abdullah et al. used the circular Hough 
transform after morphologically removing the vessels from a preprocessed image 
to determine the OD location.26 Results for many of these methods are summarized 
in Table 1.

3. Methods

This work calculates the shortest path between selected points on the periphery of 
a fundus image, based on edge weights calculated from a vessel enhanced image, to 
determine the approximate OD location. The segment with the maximum number 
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of ‘shortest paths’ is combined with the results from OD template matching and the 
vertical Hessian component to localize the OD location. Correlation values are then 
used as a check to determine if the location found is a likely OD location. If not, 
an iterative process checks larger portions of the shortest path until conditions are 
satisfied; if not, a lower bound reverts the location back to the original. Figure 1 
shows the flow of the algorithm from preprocessing through OD localization.

3.1. Preprocessing
All preprocessing steps are performed for vessel enhancement. Images are resized 
based on image resolution and the background is cropped before processing. All 
processing is performed on the green channel image due to its superior contrast 
between blood elements and background. To prevent unwanted contrast along 
the circular edge of the field of view, a mirroring technique is used to fill in the 
remaining black background pixels. A mask, GMASK, of the field of view is created, with 
all pixels beyond the mask needing to be mirrored. Pixel values are mirrored from 
the original green channel image, G, based on their distance from the circular edge 
of GMASK and the angle with respect to the center of GMASK. This removes all the black 
background pixels and leaves a rectangular region for future processing. The image 
then undergoes illumination correction by means of background estimation. The 
background illumination is estimated using a Gaussian low-pass filter with a large 
kernel, as in the following equation:

Gill =  G(x,y) - GLPF(x,y) + mean (GLPF(x,y))       (1)

where GLPF, the low-pass filtered version of G, is subtracted from G and the mean 
value of GLPF is then added back to create Gill, the illumination-corrected image. 
The largest kernel size used for the low-pass filter is 1/10*((rows+columns)/2). The 
contrast was then normalized and enhanced using contrast limited adaptive 
histogram equalization (CLAHE), which operates on windows of pixels rather than 
attempting to equalize the histogram of the entire image at once.27

3.2. Edge weight calculation
An undirected graph Gr(V, E) is a set of vertices and edges, where in our images V is 
every pixel in the foreground of the image and E is the set of connections between 
pixels. Each edge, E, can have an associated weight. General values for edge weights 
can be some measure of distance between vertices or, in this case, the images’ pixel 
intensity values. The edge weights are taken as the pixel values after performing 
Frangi vessel enhancement.28 As a short explanation, Frangi vessel enhancement 
uses the eigenvalues of the Hessian 2D matrix of the image to enhance vessel-like 
structures. The Hessian consists of second-order partial derivatives, as shown in 
Equation (2), which are generally smoothed by a simple Gaussian function:
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where Dxx through Dyy are the partial second derivatives of the Hessian, H(x,y), that 
describe the gradient of the image in different directions. The amount of smoothing 
is controlled by the standard deviation (sigma) of the Gaussian function. From the 
Hessian, the eigenvalues are decomposed and the following formulas are used to 
extract candidate tubular information:
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where λ1and λ2 are the two largest eigenvalues, RB represents a ‘blobness’ measure, 
and S represents a second-order structure measure. These two metrics are then 
combined into the following ‘vesselness’ metric:
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where β and c are constants that control the tubular filter. Ienh(s) is the vessel 
enhanced image at sigma value s. Enhancement is performed at multiple scales 
(varying the standard deviation of the Gaussian smoothing filter), and the maximum 
response at each pixel becomes the vessel enhanced image. In this particular case, 
we want to ignore the smaller vessels and only capture the primary and secondary 
vessels in the image. Thus, a higher band of sigma values (16-26) was used so that 
the tertiary vessels were not enhanced. The values from the vessel enhanced image 
are used as the edge weights in our graph after being normalized between 0 and 255, 
and inverted so that vessel pixels have lower weights. We must now determine the 
starting and ending points from which to calculate the shortest paths. The chosen 
points are equally spread around the periphery of the graph.  The image is cut 
into four quadrants, as shown in Figure 1. Starting points in quadrants 1 and 2 are 
matched with end points in quadrants 3 and 4. Four points from each quadrant are 
matched with each point in the adjacent quadrant for a total of 32 shortest paths. As 
converting the image to a graph and calculating the shortest paths is an expensive 
process, the image is down-sampled by a factor of four after vessel enhancement. 
To calculate the shortest path between the selected points, Dijkstra’s shortest path 
algorithm is used.29 The algorithm allows for the finding of the shortest path from 
a starting node to every other node in the graph in O(log(V)*E) time, where V is the 
number of vertices and E is the number of edges. In the attempt to find the shortest 
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path to the other side of the image, the main arcades and secondary vessels will 
act as highways, directing the shortest path through the convergence of vessels 
at the optic disc. As more ‘shortest paths’ are calculated, a histogram is built up 
of the number of shortest paths at each point in the graph, corresponding to each 
pixel in the image. The maximum line segment from the histogram will be the rough 
estimate of the OD location.

3.3. Template matching/edge detection
The use of OD templates and vertical vessel information has been used before to 
detect the OD and has proven effective in its own right.22 In this case, the method 
differs in that the information is combined into a single image and used only in the 
line segment of the OD candidate. The line segment found from the shortest path 
must be narrowed to a single pixel location. To do this, a combination of correlation 
with an OD template and vertical edge information is calculated in the region 
of interest. The OD template incorporates the assumption that the OD is a bright 
oval region with darker vessels exiting nasally, while the vertical edge information 
assumes that the main arcades exit the OD vertically before curving into a parabolic 
shape. The calculation of the vertical edge information has already been carried out 
when we previously calculated the Hessian for vessel enhancement.

We use the normalized gradient information from Dyy in Equation (2) as the vertical 
vessel component combined with template matching correlation scores. The OD 
template used is 100 x 100 pixels and is composed of a combination of ten randomly 
selected ODs extracted from ten images from an in-house dataset, averaged together 
and normalized. Since there is no a priori information or recognition of whether the 
image is from a right or left eye, two templates were used. The original was created 

Fig. 1. Example of algorithm flow. The original image is cropped, mirrored, and the illumina-
tion is corrected. The Frangi vessel-enhanced image is used for the graph weights. Points 
along the outside of the image are connected via shortest path across quadrants. The area 
with the maximum number of ‘shortest paths’ is the initial search zone, and the final optic 
disc location comes as the maximum of the edge detection/template matching combination 
on that line.  
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from left-eye images and then flipped for right eyes, as using a different template 
for both eyes could create bias. The maximum value combining the normalized 
template correlation values and vertical gradient information along the segment 
with the highest number of shortest paths gives the OD location.

3.4. Correction
There are several cases where it becomes clear the incorrect OD location has been 
found. While this happens rarely, an iterative process is deployed to determine if 
there is a more likely OD location. If the template/vessel gradient information is much 
lower than the maximum value in the image, the maximum segment requirement is 
decreased to allow for a slightly larger search area. This process will continue until 
areas that have 60% of the maximum number of shortest paths have been checked.  
At this point, if a better candidate has not been found, the OD location will revert to 
the original location found on the segment with the maximum number of shortest 
paths.

4. Results 

Three publicly available datasets were used to evaluate the algorithm. These 
datasets combine varying levels of disease and image quality. The OD boundary 
was manually determined except for the Messidor dataset, which used the optic 
disc boundary mask available online at: http://www.uhu.es/retinopathy/muestras.
php.20 For all datasets, a correct OD detection was any point found within the OD 
boundary.

4.1. Datasets 
DRIVE: The DRIVE dataset was created to compare vessel segmentation algorithms 
and consists of 40 images (7 with mild diabetic retinopathy, 33 with no signs of 
disease) used to make clinical diagnoses. The images were acquired on a Canon 
CR5 non-mydriatic camera at 768 x 584 pixels and a 45° field of view, and were 
compressed into JPEG.30 While this dataset consists of high-quality images with 
little disease, it has been used to benchmark OD detection algorithms for many 
years and is included for this reason.  

DIARETDB1: The diabetic retinopathy database and evaluation protocol consists 
of 89 images (5 with no signs of disease, 84 with at least mild non-proliferative 
retinopathy). Images were acquired at 1152 x 1500 pixels and a 50° field of view, and 
saved in PNG format.31

Messidor: The Messidor database consists of 1200 images, 800 with pupil dilation 
and 400 without. All images were acquired using a Topcon TRC NW6 non-mydriatic 
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camera at a 45° field of view. The images were captured using 8 bits per color plane 
at 1440 x 960, 2240 x 1488, or 2304 x 1536 pixels.32

4.2. OD detection
Results are given for the three publicly available datasets and compared with many 
other algorithms on these datasets which can be found in Table 1. The results for 
the DRIVE dataset obtained a 100% detection rate of the optic disc. Table 1 shows 
that many methods obtain these same results, as these images are typically of good 
quality and contain very little disease (seven images with mild diabetic retinopathy). 
It should also be noted that correction in this dataset was unnecessary. Figure 2 shows 
a sampling of correctly detected images from the database. A 98.88% detection rate 
was achieved on the DIARETDB1 database, which amounts to missing a single image 
from the 89-image dataset; this image is the last one in Figure 5. A combination of 
a dark OD and low contrast in the area had the algorithm second-guess its initial 
estimate, which was just below the OD. Correctly identified OD locations from the 
dataset can be seen in Figure 3. The dataset contains 84 images with at least mild 
diabetic retinopathy. Since nothing in this algorithm depresses the contribution of 
lesions in the vessel enhancement step, large numbers of lesions can occasional-
ly create a short circuit in the shortest paths calculation, splitting some paths and 
requiring correction to properly detect the OD. Even though this occurred, the 
algorithm was able to correct the OD location in each case. The optic disc was found 
in 1193 of the 1200 images in the Messidor data set for a 99.42% detection rate.  
Correctly detected OD locations for this database can be seen in Figure 4. All seven 
of the misses can be seen in Figure 5. The main reason for incorrect detection was 
blur, either from poor image quality or possible cataract that covered either the OD 
vessels or the main arcades from an entire hemisphere of the image. The second 
reason for misses was bright regions near or around the OD.  These non-OD bright 
regions will have edges that appear in the vessel enhancement. Figure 6 shows 

Fig. 2. Sampling of correctly detected images from the DRIVE database. Estimated OD 
location is marked with a cross surrounded by a circle.
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Fig. 6. Incorrect OD locations that where corrected due to the low likelihood of the original 
location being the true OD by the iterative correction of the algorithm.

Fig. 5. All incorrectly detected images. (1-7) Messidor. (8) DIARETDB1. Final estimated OD 
location is a cross with a circle around it. Attempts at correction are crosses or stars that 
have not been circled.

Fig. 4. Correctly detected OD location in images from the Messidor database.

Fig. 3. Correctly identified OD location in images from the DIARETDB1 database.
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examples of the iterative corrective process successfully finding the correct OD after 
being initially incorrect. 

5. Discussion 

The algorithm was implemented in Matlab 2016a on a desktop computer (Intel i7 
CPU at 3.4 GHz and 16 Gb RAM), and average run time was 32 ± 1.2 seconds per image. 
This time held relatively constant through each dataset due to the up-sampling of 
the images prior to processing. This could be greatly reduced through code optimi-
zation and choice of programming language. Also, 26 of those seconds were spent 
calculating the Frangi vessel enhanced image to calculate the edge weights for the 
graph. The Frangi method is not the only one that produces a vessel enhanced 
image, and other methods could replace this one in order to reduce running time 
or improve results. The number of points used to calculate shortest paths can 
also affect the results. The number chosen for this study (four per quadrant) was 
based on experimentation as a tradeoff between results and processing time. More 
points could shrink the initial search region for the OD, but placing points too close 
together will only raise processing time as these points will likely choose the same 
shortest path if they are all near the same vessel at the periphery.

This idea presents a global approach to vessel convergence and relies heavily 
on the presence of the main arcades being present in the image. This does not 
usually occur in images where the field of view is less than 45°. Older datasets 
used for testing, such as the STARE dataset,15 which was widely used to validate 
OD detection methods, contains many images at a 30º field of view or less. Since 
there is no convergence of vessels without the main arcades, the algorithm was not 
benchmarked on this dataset. However, of the 81 images in the STARE dataset, 46 of 
the images meet the vessel convergence criteria as either having the main arcades 
present or being OD-centered images, in which vessel convergence is assured. In 
this subset, the algorithm was unable to detect the OD in four images for a 91.3% 
detection rate.

6. Conclusions

This work presents a novel method for OD localization based on the shortest path 
between points on the periphery of the image using edge weights calculated from 
a vessel enhanced image to detect the likely convergence of vessels at the OD. The 
algorithm achieves results comparable to or better than results from state-of-the-
art algorithms on the selected databases. The excellent results achieved from 
the Messidor database show that this method would be useful in an automated 
screening system or retinal vessel analysis system, where the processing time taken 
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for vessel enhancement can be used both for OD detection and vessel segmenta-
tion, saving overall processing time.
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