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Abstract

Purpose: The motion of the upper eyelid during blinking can be important in dis-
eases and syndromes that a�ect the eye; these include dry eye syndrome and
blepharospasm, for example. We employ mathematical methods in this proof-of-
concept study to classify blink motion.
Methods: Using data from a pilot study, hypothesized lid motion functions are fit to
the dynamic position of the center of the upper lid under four experimentally con-
trolled conditions. The coe�icients of these non-linear fits are used with measured
data to classify blinks. Agglomerative hierarchical and spectral clustering methods
were used to attempt an automatic distinction between partial and full blinks as well
as between normal and abnormal blinks.
Results: Results for both approaches are similar when the input data is suitably nor-
malized. Clustering finds outlying blinks that do not fit the model functions for lid
motion well and that di�er from the majority of blinks in our sample of N = 393
blinks; however, those blinksmay not be outliers based on easily observed data such
as blink amplitude and duration.
Conclusion: This type of analysis has potential for classifying blink dynamics from
normal and pathological conditions such as recovery from Bell’s palsy or dry eye
syndrome, but more work is needed with larger sets of data from blinks to put forth
firm conclusions.
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1. Introduction

During a normal eye blink, the upper lid moves inferiorly during the down phase
or downstroke, and during the subsequent up phase or upstroke a thin tear film is
painted over the exposed corneal and conjunctival surfaces.1,2 The quality of the tear
film le� behind depends on many factors, including the speed of the lid,3 thickness
of tears under the upper lid,4–6 total amount of tears present,7 lipid layer dynamics,8
and the motion of the lids themselves.1,9,10 The dynamics of the blink have a well-
known connection to the visual demands, activity level, and mental state of the
subject, and blink rate is known to be altered in pathological conditions such as dry
eye syndrome (DES). Thus, there may be an interplay between the e�ectiveness of
blinks and the development of DES.11 Other conditions that are intimately related to
blinking include blepharospasm.11

Blinks have been categorized into three types: voluntary, reflex (e.g., reactions)
and spontaneous.2,12 In a classic paper on this topic, Evinger et al.12 measured the
kinetics of these types of blinks using amagnetic coil search technique and skin elec-
trodes to record the activity of themuscles involved in the blink as the eyelid opened
and closed. The twomainmuscles involved in blinking are the orbicularis oculi mus-
cle, which acts to close the eyelid, and the levator palpebrae, which opens the eye-
lid during the blink. Evinger et al. suggested that these muscles were aided by their
associated ligaments because they act in a spring-like fashion.12 Kaminer et al.13 hy-
pothesized that the spinal trigeminal complex plays an important role inmodulating
incoming neural signals to vary the blink pattern.

Blinks were also captured and analyzed by Doane1 by filming subjects with a tele-
photo lens through a half-silvered mirror during the interval when the subjects be-
lieved they were relaxing before the test was to begin. He analyzed themotion of the
upper lid margin by manually capturing the location in each frame and then collect-
ing the results. He found that most blinks were partial, and that, typically, a�er a few
partial blinks, there was a full blink. Thoughwe o�en think of a full blink as when the
upper and lower lids meet, it may be that most full blinks have the lids approaching
eachother but not necessarily touching.14,15 It has been found viamathematicalmod-
els that the lids need not touch for the fluidmotion to "reset" and for there to bewhat
is e�ectively a complete blink.5,16

A number of other studies have shown that the blink rate (BR) or interblink in-
terval (IBI) can be a�ected by many factors. Reading, working on computer, or other
visual tasks requiring concentration are known to decrease blink frequency,17–20
whereas irritation or stimulation of the ocular surface increases the BR.21–23 DES is
associated with an increased BR19,23 presumably due to the ocular surface irritation
and stress provided by surface drying or increased hyperosmolarity from an unstable
tear film.24,25

Other ocular conditions are related to blinking as well. Subjects recovering from
Bell’s palsy, a unilateral weakening (or sometimes paralysis) of the peripheral facial
muscles, can strongly a�ect blinking and lead to inflammation and even functional
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blindness; a�er one year of recovery, orbicularis oculi activity may normalize but
blink amplitudemay remain decreased.26 Blepharospasm can cause rapid and invol-
untary blinking;2 perhaps this and other eye distonia could be detected in a develop-
ing or less severe state so thatmost severe states could be avoided or limited. Grave’s
upper eyelid retraction has been said to have a paucity of data,2 and more data with
improved quantitative processing could aid understanding of this condition as well.
In all of these cases, basic understanding could be aided by further quantification of
blink processes.

Blinks occurring when the subject knows that he or she is being observed are not
unconscious, but may still provide useful information. Tasks may be assigned to oc-
cupy the subjects during experiments, and this is done in the clinic either as a dis-
traction or to study the dependence of blinks on the performed task2,22 and stimulus
type.9,19,21 We use data from a recent pilot study by Wu et al.22 in ten test subjects, in-
cluding normal and DES subjects, whose blinks were recorded for oneminute as part
of a 2.5 minute interval. The blinks were recorded with and without a light flow from
a fan blowing on the subject’s eye, in each case while working on either a high- or
low-concentration task. The data was taken a�er an initial 30 s start up phase, and
the blinks were measured by monitoring the location of a centrally-located spot lo-
catednear the superior lidmargin. The recordedblinkswere preprocessed in order to
identify the start and end of blinks for each subject. The IBI wasmeasured as the time
from themaximum liddisplacement of oneblink to the subsequent blink. They found
that even themild stimulus fromair flowused on the surface of the eye decreased the
IBI and its variability regardless of whether it was a high- or low- concentration task.
The high-concentration task increased IBI and its variability, and thus had an oppo-
site e�ect to external stimulus. Blink amplitude, defined as the percentage of a full
blink achieved at the end of the down phase of lid motion, had no significant e�ect
from either the stimulus or task. However, they observed that the majority of blinks
were partial, in accord with previous studies.1,2,19 They also observed a di�erence in
correlation between blink amplitude and maximum speed during the down phase
depending on whether the subject was previously diagnosed with DES.

In another study by Wu et al.,27 using ten normal test subjects and similar con-
ditions, it was found that IBI regularity increased with increased flow rate from the
fan providing increased surface stimulus, most likely as a protective measure. It was
found that there was a roughly linear relationship between ocular surface stimula-
tion and decrease in IBI. Because only normal subjects were used, it is possible that
a di�erent response could be present for subjects that havemoderate to severe DES.

The first quantitative mathematical model of blinking of which the authors are
aware was developed by Berke and Müller.28,29 They designed a function that closely
mimicked the position of the central lid margin during a blink. The function repre-
sents the displacement inferiorly, x(t), from the rest position of the upper lid through
the duration of the blink using:

x(t) = a0t2 exp(−bt2). (1)
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There are two constants, a0 and b, which were chosen appropriately to fit the blink
amplitude and duration. This function has been modified to describe lid motion in
theoretical work on tear film dynamics and blink cycles.5,6,16 Similar functions have
been implemented in theoretical models for tear film deposition for the aqueous
layer alone4,30 and including the action of polar lipids.31–33 We shall modify this func-
tion in order to improve the fit for awider variety of blink data, and to use those fits to
classify blinks. We note that the lid motion function is not periodic in general34 and
the IBI depends on task and conditions;2,22 in any case, we wish to study individual
blinks and so Equation (1) su�ices.

The purpose of this study is to develop methods to use the coe�icients from a
modified versionof Equation (1) togetherwithmeasuredblinkdata suchasamplitude
and duration so that outlying blinks can be identified. If this can be done, then there
is the potential to apply the method to clinical conditions like DES and Bell’s palsy,
among others, to quantitatively assess blinking and its relation to the condition in
question. This is certain to lead toabetterbasic scientificunderstandingof conditions
involving blinking, and thus has the potential to improve approaches in the clinic.
We now go on to describe the methods used, then proceed to results, and finally,
discussion.

2.Methods

The experimental data and methods used in this work are published elsewhere,22,27
but for convenience we provide a brief description of them here. Then, we proceed
to the mathematical approach.

2.1 Experimental measurements

For this paper, we studied N = 393 blinks pooled from five subjects in a recent pilot
studybyWu et al.22 The experimentalmethoddiscussionhere is closely basedon that
in Wu et al.22 Video recordings at 250 frames per secondweremade of ten subjects in
four conditions based on combinations of two tasks with or without a gently blow-
ing fan. Both healthy and dry eye subjects were included in the study based on their
responses to the Dry Eye Questionnaire.35 Five subjects were chosen because they
had what was judged to be the best data for lid position across all of their blinks; one
subject was normal with the remaining four self-reporting dry eye symptoms. The
observations were made in two di�erent visits (one visit with a fan, one visit with-
out). The tasks were either listening to music (low-concentration state) or playing a
video game (high-concentration state). Each task lasted 2.5 min with a 15-min break
between tasks. When in use, a small electronic fan was located 50 cm from the eye,
resulting in a measured air speed of 1.34 mph (0.6 m/s) at the eye.This air speed is
very gentle and is insu�icient tomove, for example, tree leaves. Subjectswere seated
behind a Zeiss biomicroscope system (8×magnification) with a custom-fitted cam-
era used to record upper lid movement (Basler piA640-210 gm, Basler AG, Germany,
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250 Hz). In order to track eyelid positions during blinking, a 2mmdiameter reflective
whitedotwas centeredon themarginof the right upper lid. During the visitwith a fan,
the recording was started oneminute a�er the onset of air stimulus to allow subjects
to become familiar with the stimulus. Only the right eye was tested and the le� was
held shut by the subject to ensure that stimulus from the ocular surface arose from
the tested eye. Other data was collected,22 but was not used in this work.

The observed upper lid positions were processed as follows. When the lid ap-
peared to start moving downward from the highest vertical position, a blink was be-
gun. When the lid returned to that position, the blink was ended. The largest blink
position for that subject without any apparent squeezing was labeled as an ampli-
tude of 100%. A blink that did not fully close would have a blink amplitude of less
than 100%. This process was repeated for each blink in the 2.5 min interval per task.
This process was automatedwith a customMatlab program (TheMathWorks, Natick,
MA, USA). We used this processed blink data in this work.

2.2 Mathematical approach

We first fit a curve to the processed lid position data. Then, the coe�icients from the
fitting process are combined with measured data as well as error in the fit to form a
set of combined data. Then, two types of clustering are performed on the combined
data.

2.2.1 Fitting the blink data

When we attempted to use Equation (1), it did not fit a significant fraction of our data
well. We modified the function in Equation (1) so that the fit could be improved to
better describe a larger number of blinks:

f(a, t) = (a0t2 + a1t3 + a2t4) exp(−btc). (2)

The parameters determined from the a non-linear least squares fit are the five quan-
tities a0, a1, a2, b, c. The special case a1 = a2 = 0 and/or c = 2, which includes Equa-
tion (1), were also considered. The measurement of the lid position xi is collected at
m times ti for blink i. The vector of lid positions and times are x and t, respectively;
f(a, t) is the vector of fitting function values at t. mi and varies from one blink to
another, but we denote the number of time points in a particular blink asm for sim-
plicity. For a representative case below,m = 58. Minimizationof the sumof the square
errors (SSE) over the fit parametersa = a0, a1, a2, b, cwas performed to establish the
best fit for the given data via:

min
a
||f(a, t)− x||22 = min

a

m∑
i=1

[f(a, ti)− xi]2 = min
a
SSE. (3)

The resulting fit yields: âi = {â0i, â1i, â2i, b̂i, ĉi}, which denotes the coe�icients
found during the fitting for blink i. MATLAB’s lsqcurvefit function was used for the
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Fig. 1. An example fit of the displacement of the upper eyelid throughout the entire blink using
Equation (2). The displacement fraction is relative to a representative full blink; see text for
more details. The blink duration is normalized to unity for each blink for fitting.

minimization with all variables unconstrained except for c, which was limited to the
interval 1≤ c ≤ 5. The minimization and subsequent analysis was improved by nor-
malizing the experimental data as follows. Theduration of eachblinkwas normalized
to 0≤ t ≤ 1 to allow for a more robust fit and to avoid any problems with small ini-
tial gradients in the iteration of theminimization. Furthermore, the lid displacements
during the blinkwere renormalized by dividing by 100%, so that a fractional displace-
ment was used rather than the percentage described in Wu et al.22 Thus, a half blink
wouldhave ablink amplitudeof 0.5 in our renormalized form. Using thesenormaliza-
tions andEquation (2), our approach frequently captured thenatureof theblinks very
well, with anSSEof 0.0342 and standarddeviationof 0.1008 for the example shown in
Figure 1 which usedm = 58 measured displacements. It was found that most blinks
had 2≤ c ≤ 3, and as shown in Figure 2, most of the blinks with a large c value were
either full blinks or blinks that Equation (2) was not able to fit well. Numerical explo-
ration did not yield any alternative fits for the data examined, and from this evidence
we assume that the fits are unique for this choice of function.

2.2.2 Clustering of the combined data

We then hypothesized that combining parameters from the fit, namely:

âi = {â0i, â1i, â2i, b̂i, ĉi}

together with the log of the residual (ln(SSE)), and directly observed data, such as
blink amplitude and duration, would result in a better classification of blinks than
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Fig. 2. Representative sample of blinks with c ≥ 3.5.

could be obtained from using only the directly observed quantities of the blink (such
as amplitude and duration). The coe�icients of Equation (2) found from the fits con-
tain some additional information about the shape of the lid displacement function
compared to the blink amplitude and duration. For example, the larger positive val-
ues for cmaymean faster decay back to zero displacement, but largera0 anda2 could
mean a steeper rise of the curve and slower decay back to zero displacement later
in the blink. In what follows, we use the term "measured data" to refer to the blink
amplitude (BA), blink duration (BD) and natural logarithm of the IBI (LIBI), which are
recorded directly from the blinks. We use the term "fit data" to refer to the result-
ing coe�icients from fitting Equation (2) to the observed blinks. The term "combined
data" will refer to using fit data, the residual of the fit andmeasured data together for
blinks, namely:

ŷ =
{

â0i, â1i, â2i, b̂i, ĉi ln(SSE),BA,BD, LIBI
}

. (4)

To the fit parameters, we added the logarithm of the minimum SSE, the BA, and
BD (whichwerenormalizedbefore fitting), and the logarithmof the IBI. Altogether,we
usedninequantities in ŷi to characterizeeachblink: {â0i, â1i, â2i, b̂i, ĉi} (the fit data),
the log of the residual ln(SSEi), and the three physical parameters (the measured
data BAi,BDi,LIBIi).

We then applied hierarchical clustering methods36,37 and spectral clustering
methods38 on the combined data. These algorithms seek to combine or cluster
like data into more homogeneous groups compared to the original data, as well
as to find structure in the data. By structure, we mean the ability to associate like
blink displacement functions into a group and to separate unlike blinks into di�erent
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groups. A�er testing a variety of possibilities, we have pinpointed some promising
combinations for helping to identify structure in blink data.

All blink data from the five subjects was pooled for the clustering methods; this
resulted in a total ofN = 393 blinks. Two types of clustering methods were applied
to the combined data in order to group like kinds of blinks and to identify normal and
outlying blinks. We begin with hierarchical clustering, and then proceed to spectral
clustering.

3.Results

3.1 Agglomerative hierarchical clustering

In order to better understand the blink parameters and how they may be grouped,
agglomerative hierarchical clustering was used.37,39 In this method, the number of
clusters is set in advance; we varied the number of clusters subjectively to get the
best results. More details of this approach are given in Appendix A. The clustering
was initially performed on only the threemeasured parameters that can be observed
directly without using any curve fitting (BAi,BDi,ln(IBIi)); the results for the three
clusters are shown in Figure 3. For this clustering, we employed a Scaled-Euclidean
metric with a weighted average linkage, which normalizes the data and improves the
results. Three clusters were readily identified, corresponding to short partial blinks
with with approximately less than 40% closure; forced, fuller blinks with long dura-
tion and more than 70% closure; and "normal" blinks as shown in Figure 3. It was
found that when using agglomerative hierarchical clustering on the combined set of
all observed and fit parameters ŷwithout prior normalization, no discernible groups
emerged for any combination of metric or linkage discussed in the appendix. How-
ever, the results were improved when each component of the data was normalized
with its z-scores; those results are shown togetherwith the spectral clustering results
below.

3.2 Spectral clustering

Some details of spectral clustering38 are given in Appendix B. Whenwe perform spec-
tral clustering,we consider all of the combineddata ŷ. To facilitate abetter clustering,
all of the data of each factor xwas normalized to its z-score via:

z(k) = x(k) − x̄(k)1
s(k)1

, (5)

where x(k) contains the set of the k-th variable of the combined data (e.g., the blink
durations), z(k) contains the corresponding z-scores, x̄(k) is themeanof the k-th vari-
able (a scalar), 1 is a vector with unit entries that is the same size as x(k), and s(k) is
the standard deviation of the k-th variable (a scalar).
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Fig. 3. Clustering performed using only the physical parameters: amplitude, duration, and
ln(IBI), with a Scaled-Euclidean distance and a weighted similarity metric. The clusters are
shown using duration and fractional displacement axes only, although the remaining variable
ln(IBI) also a�ects the clustering.

Plotting a0, a1 and a2 from the fit data shows that most of the blinks appear to
lie on a crescent-like curve a�er normalization to the z-scores (Fig. 4). We hypoth-
esize from this result that we may call a blink "normal" if it lies close to this curve.
We did not determine an analytical approximation to this curve. For smaller values of
a0 and a2, and larger values of a1, the blink fits are more scattered and lie relatively
far from the curve; we hypothesize that these blinks are outliers. Spectral clustering
shows that the blinks that are more scattered are clustered in terms of the nine clus-
tering quantities. This is indicated by the lighter-colored circles where the circles are
scattered from the curve.

Some of the blinks hypothesized as outliers are shown in Figure 5. Most of these
outliers are either short, partial blinks, or blinks that have irregular positions as func-
tions of time, or both. In addition, we also note that blinks from Subject 4, when per-
formed without a fan blowing and while listening to music, had much larger blink
amplitude and longer duration than the other subjects. This could be due to an un-
derlying physiological problem, and would require further review; there is too little
data to draw a conclusion here.

The values assigned to the nodes by the spectral clustering can be determined by
the number of clusters given to the k-means clustering algorithm at the end of the
spectral clustering algorithm.38 The results for four di�erent choices of cluster num-
ber are shown in Figure 6. From the figure, we see that as the requested number of
clusters increases, we are able to capture more subsets of the scattered results that
do not appear to lie on the crescent-shaped curve in the coe�icient plot.

A�er normalizing all combined data to their z-scores, we see that similar results
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(a) (b)

Fig. 4. Spectral clustering performed using all physical and fit parameters displayed using the
three polynomial coe�icients of the fit normalized to their z-scores. Plot (b) is the same as
plot (a), except that the viewpoint has been rotated 180◦ about the a2 axis. Note that even
though Figure 4 is shown with only three of the blink features (from fit data), all nine of the
combineddata are used in the spectral clustering. Thepoints are coloredusing the eigenvector
corresponding to the second smallest eigenvalue.

are obtained when comparing the agglomerative clustering (right) to the spectral
clustering (le�) in Figure 7. This agglomerative clustering was performed using a
cosine metric with a weighted average linkage and three clusters. In addition, we
see that the spectral clustering is able to identify subgroups (when increasing the
number of clusters given to k-means) that the agglomerative clustering cannot. In
particular, the clearest results came from seeking three clusters from the agglomer-
ative clustering, while more clusters appeared from spectral clustering (at least six
clear ones) and some of the spectral clusters had very few members. In either case,
the largest cluster had a2 very close to zero or larger (roughly a2 ≥ 0), with the other
clusters appearing largely for a2 < 0. Because di�erent approaches to clustering give
a similar result for the biggest cluster, we believe that this supports our hypothesis
about detection of normal blinks via our approach.
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Fig. 5. A representative sample of the plots of the blinks that were outliers found from spectral
clustering.
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Fig. 6. Plots of the clusters found using spectral clustering with two (top le�), three (top right),
five (bottom le�), and six (bottom right) clusters. The use of five and six clusters was shown
instead of four and five because of the identified singleton cluster near the top of the bottom
two figures.
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Fig. 7. Plots of the clustering comparing both the results from the spectral and agglomerative
methods. The le� column corresponds to spectral clustering; the right, to agglomerative clus-
tering. Each row is a di�erent view of the result; note the axis labels. All of the combined pa-
rameters were normalized to their z-scores prior to clustering.
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Spectral clustering uses more features and produces more di�erentiation be-
tween the points, particularly among the outliers. If we select the blinks correspond-
ing to the yellow cluster in the top right plot in Figure 6, a group starts to form around
a blink amplitude of 0.6 and blink duration of 300 ms, one that is not easily distin-
guished using the clusters based onmeasured data alone (Fig. 8).

The number of outlying blinks from the pooled blink set are shownby subject and
task in tabular form (Table 1). By subject, threeof the subjects account for the vastma-
jority of the outlying blinks from the spectral clustering method for either threshold
value. The outliers are in the the green, brown, and bright blue clusters in the bot-
tom right plot in Figure 6 and the yellow cluster in the top right plot in Figure 6. By
task, outlyingblinksappeared tobeassociatedwith the fan stimulus for either thresh-
old value. For both cluster selections, it was found that the music tasks accounted
for 75% and 76% of the total outliers, respectively. This finding agrees with previous
results.19,22

Table 1. (a) Table of the number of outliers according to the specific subject (Sub) and task for
the yellow cluster in the top right plot in Figure 6. (b) Table of the number of outliers according
to the specific subject and task for the yellow cluster in the top le� plot in Figure 6. The total
for each task and subject is given in the last column and row of each table, respectively.

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Total
Fan & Game 1 0 2 1 1 5
Fan & Music 1 1 3 2 0 7

No Fan & Game 0 0 2 0 0 2
No Fan & Music 0 4 7 3 0 14

Total 2 5 14 6 1 28

(a)

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Total
Fan & Game 2 2 2 1 1 8
Fan & Music 3 1 6 2 0 12

No Fan & Game 0 0 2 0 0 2
No Fan & Music 0 7 10 3 0 20

Total 5 10 20 6 1 42

(b)

We also see that Subjects 4 and 5 have the least number of outliers (six and one,
respectively), and for both subjects, changing the thresholding eigenvalue does not
add in any new outliers. We can also identify that the task where subjects do not
listen to music and play a video game does not produce any new outliers between
the thresholds. Additionally, using Table 1, we can see that Subject 3 has the most
outliers for both eigenvalues used.
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4.Discussion

A�er normalizing the blink duration to be 0≤ t ≤ 1, we found that any blinks with a c
value outside of the interval of roughly 1.5< c < 3 can be considered outliers in this
dataset. From Figure 2, we see that blinks with a c & 3.5 are normally very full blinks
that reach their maximum displacement of the upper lid very quickly, and then take
longer thannormal to reopen. FromDoane’s study,1 theaveragedownstroke timewas
82ms and the average upstroke timewas 176ms, but Evinger et al.12 found a range of
blink amplitudes anddurationswith anon-linear relationshipbetween them. Theap-
proachhere includes bothobserveddata likeBAandBDaswell as fit data â, and thus,
additional information about how the blink trace is shaped. For the same BA and BD,
di�erent functions canachieve those sameobservedquantities, but theymaybe sep-
arated if the fit data â are included. Figure 8 shows that many of the outliers appear
in what looks like normal blink amplitude and duration ranges. These outliers may
have relatively slow and linear downstrokes, or other features that are unusual in the
shape of the blink trace. Including this information has resulted in a more automatic
identification of blink traces that fell outside the normal range for this dataset.

Spectral clusteringmayprovide thebest option for additional classification. It ap-
pears thatmost blinks lie on a crescent-like curve in the polynomial coe�icient space
(Fig. 4). The outliers in Figure 4 appear to consistmostly of blinks short, partial blinks,
as well as a fewwith irregular shapes. By selecting a particular eigenvalue threshold,
we are able to determine a cuto� as to what could be considered outliers in a given
dataset.

Using this criteria for the cuto�, when we overlay the outliers from spectral clus-
tering we are able to identify a potential grouping of blinks (Fig. 8) that di�ers from
themajority. Spectral clusteringusing theparameters fromcurve fitting togetherwith
themeasured physical values allowed for an additional classification not possible by
the agglomerative clustering using only the physical values.

The number of subjects was small in this study, so general conclusions about
blinking and task or disease are not advisable. However, given that the blink rate is
known to varywidelywith task,mental state, and disease, thesemethods show great
potential for understanding the e�ects of these di�erent conditions on blinking.
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Fig. 8. Plot of the groups found from the agglomerative clustering (red, green, blue) with out-
liers as determined by spectral clustering (black) superimposed. The top figure corresponds
to the yellow cluster in the top right plot in Figure 6, while the bottom one corresponds to the
yellow cluster in the top le� plot in Figure 6.
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5. Conclusion and future directions

A refined classification of blinks was possible through the use of combined data that
used both measured data and fit parameters indicates the possibility of identifying
abnormal blinks and perhaps other conditions such as DES.22 Further work with a
larger set of subjects and more blinks per subject could verify our conjecture about
the possible classification of blinks using data from both measured and fit parame-
ters. More data may allow the study of subject-specific classification, which can be
desirable in some cases,22 but was not feasible here. More data in condition-specific
contexts such as Bell’s palsy or blepharospasm may also be aided by a more auto-
mated classification of blinks.

We note that clustering results depend on the techniques chosen and the judg-
ment of the user.36 We have been able to obtain similar results from distinct cluster-
ingmethods provided that each component of the combineddata is normalized to its
z-scores. Using this normalizationmaymake the results more robust betweenmeth-
ods, but work with more data is needed.

Our approach is limited to some extent by our choice of blink displacement func-
tion. We showed some of the worst case fits in Figure 2, and thus other functions or
approaches to the fitsmaywork for someblinks.40. Furthermore,weonlyuseda sum-
mary of the curves by using the fit coe�icients rather than the functions themselves;
using clustering on the functions themselves may yield additional insights.41 Addi-
tionally, other clustering approaches such as those found in the statistical so�ware R
maybe be appropriate.

To summarize, blink frequency (or equivalently, IBI) is currently the most com-
mon parameter used to categorize blinking in normals and various disease states,
but blink frequency does not directly describe the action of the blink itself. There are
many blink parameters (blink amplitude, velocity, etc.) that have been studied, but
examination of individual parameters are unlikely to adequately describe the blink-
ing process due to the complex interactions among them. Therefore, the analytical
method we suggest here has the advantage of taking into account a greater number
of themany parameters and quickly identifying groups of similar blinks and outliers.
This quantitative method has potential for identifying blinks that may be character-
istic of various disease states, and possibly, quantifying the e�ect of treatments if the
treatment is designed to restore normal blinking. In the field of dry eye, there is a cur-
rent emphasis on neuropathic causes for the condition. Given that the blinking and
tear response as well as the symptoms all arise from sensory neurons at the ocular
surface, blinking may be a reasonable endpoint for testing the ocular surface neural
response.42 Additional directions could involve combiningblinkmotionobservations
with physiologicalmeasurements ofmuscle activity (such as orbicularis oculi or leva-
tor palpebrae superiorismuscles)2may help clarify at least some causes of variations
in blink activity. Similarly, including appropriate neural activity may also shed light
on connections between abnormal blinks and neural control of blinking.9,12,21,26,43,44
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A. Agglomerative hierarchical clustering

Agglomerative clustering can be thought of as a method for starting with a binary
tree of data that is merged into groups of similar points successively. To perform this
type of clustering, we require two main inputs besides the data. One is a specified
distancemetric between any two data points and ameasure of similarity between all
the groups of data points. For clustering algorithms, some specific distance metrics
are o�en employed, i.e.:

Euclideanmetric d(x, y) =
√

n∑
i=1

(xi − yi)2

Scaled-Euclideanmetric d(x, y) = 1
max[d(x,y)]

√
n∑

i=1
(xi − yi)2

Chebyhev metric d(x, y) = max
i

(|xi − yi|)

Cosine metric d(x, y) = 1− x·y
||x||||y|| .

It should be noted that the cosine metric is not strictly a metric in the classical sense
(the triangle inequality does not hold). Generally speaking, a Euclidean distancemet-
ric is most favorable for low-dimensional datasets where the range of distances only
goes over a few orders ofmagnitude. For higher dimensional datasets, or oneswith a
wide range of distances, a Scaled-Euclideanmetric is normally preferred. The Cheby-
shev distance is normally appropriate when the di�erence between any two points is
better represented by the di�erences in individual dimensions rather than all of the
dimensions together. The cosine metric works well when trying to capture the simi-
larity between certain feature changes in multiple dimensions.

Once a distance metric is chosen, the next thing to determine is the linkage be-
tween each group. Linkage is, in a sense, a measure of how similar two groups are to
one another. There are multiple kinds of linkages that are o�en used in this type of
clusteringmethod; let r bea cluster formedby combining twoclusterspand q, and let
x

(r)
i be the i-th element in cluster r, and let dist(x, y) be a specified distance metric.
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Some common linkages are as follows:

Single d(r, s) = min
i,j

[dist(x(r)
i , x

(s)
j )] (6)

Complete d(r, s) = max
i,j

[dist(x(r)
i , x

(s)
j )] (7)

Average d(r, s) = 1
nrns

nr∑
i=1

ns∑
j=1

dist(x(r)
i , x

(s)
j ) (8)

Weighted Average d(r, s) = d(p, s) + d(q, s)
2 (9)

Here, the weighted average linkage is special, in that it is recursively defined by the
averageof linkagesd(p, s)andd(q, s)betweenpreviously computedclustersp, q, and
s.

It shouldbenoted that agglomerative clustering is not a fully automatic clustering
scheme; thedistancemetric, group linkage, andnumberof clustersmustbespecified.

For the agglomerative clustering used in this paper, a�er selecting a desiredmet-
ric to use, the distances were computed using MATLAB’s pdist function, which uses
one of the metrics specified from the above list, where each column of the data ma-
trix represents a di�erent dimension. Then MATLAB’s linkage function was used to
determine the similarity between any two groups, using one of the specified meth-
ods above. Once the distances and linkage were computed, a predefined number of
clusters was computed by MATLAB’s cluster function. The number of desired clus-
ters was varied until discernable groups emerged, with a recalculation of cluster
performed at every step.

B. Spectral clustering

Unlike agglomerative clustering, where a distance metric, linkage weighting, and
number of clusters must be specified, spectral clustering is, in a sense, completely
automated, and one does not specify this parametric information.38 (We include the
latter reference as a particularly accessible treatment.) We suppose that there are
n blinks. To perform spectral clustering, we first calculate the Euclidean distance
matrix:

G = (gij), with elements gij = ||xi − xj ||22 (10)

where:

||xi − xj ||2 =
[

n∑
m=1

(
x

(m)
i − x

(m)
j

)2
]1/2

(11)

is the standard2-norm for vectorsxwithn components per blink. Here iand j denote
di�erent blinkswith i = 1, 2, . . . , N and j = 1, 2, . . . , N ; the superscript (m)denotes
the component of the vector of data for a specific blink withm = 1, 2, . . . , n. In our
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case, we used a vector of n = 9 components corresponding to the measured and fit
parameters for each blink.

We then exponentiate the elements of the distancematrix to obtain the similarity
matrixWwith elements:

wij = e−2gij . (12)
The similarity matrix W represents a local distance distribution, i.e., the points that
are closest together will have a stronger influence on each other than points that are
far away. We also define the diagonal degreematrixDwhose diagonal elements are:

dii =
N∑

j=1
wij , (13)

forN blinks. ThedegreematrixD representshowstrongly connectedeachdatapoint
is to every other data point. We then form the normalized graph Laplacian:

L = I −D−
1
2 WD−

1
2 , (14)

where I is the identity matrix. We now calculate the eigenvalues of L and sort them
in increasing order. Zero is always an eigenvalue of L; the geometric multiplicity of
the zero eigenvalue indicates the number of connected components of the theoret-
ical graph of the data (in the sense of graph theory).38 The connected components
are then taken to be the clusters. One then uses the associated eigenvectors to as-
sign each point to a cluster. To do this, say that the zero eigenvalue is repeated and
has k independent eigenvectors, i.e., its geometric multiplicity is k. The k eigenvec-
tors associated with the zero eigenvalue are assembled into a matrix with each row
representing a data point, and each row of the matrix suitably normalized.38 Then,
K-means clustering37 is applied to obtain k clusters from this normalized data. The
resulting clusters are the output of the spectral clustering algorithm.

There are di�erent interpretations of the spectral clustering approach that may
help visualize what is happening. One is that this process can be thought of as an ap-
proximation to the certain minimization problems on graphs, which are variations of
themincut problem. The conversion of the clustering problem to the graph cut prob-
lemhas the advantage of being automatic in the sense that the algorithmdetermines
the number of clusters from the data. Another is to think of the probability of being
at various points on a graph due to random hopping by a flea (i.e., a random walk
model for di�usion). If a flea jumps around the nodes of a network, with probabilities
of jumps scaled to the distance between nodes, then spectral clustering simulates
the di�usion of probability of being at every node. The idea is that the flea jumps be-
tween clusters rarely, so the clusters get separated in probability depending onwhere
the flea starts. Mathematically, the uniform probability (a steady state in di�usion) is
the constant function over the graph, which is always an eigenvector of eigenvalue
zero. The initial position of the flea gets projected onto the eigenvectors. If there are
k "natural" clusters, then there will be k eigenvectors with eigenvalues much closer
to zero than all of the others.
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