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Abstract

Purpose: Intraocular pressure (IOP), mean arterial pressure (MAP), systolic blood
pressure (SYS), diastolic blood pressure (DIA), ocular perfusion pressure (OPP) are
important factors for clinical considerations in glaucoma. The existence of linear re-
lationships among these factors, referred to as multicollinearity in statistics, makes
it di�icult to determine the contribution of each factor to the overall glaucoma risk.
The aimof thiswork is to describe how to account formulticollinearitywhenapplying
statistical methods to quantify glaucoma risk.
Methods: Logistic regressionmodels includingmulticollinear covariatesare reviewed,
and statistical techniques for the selection of non-redundant covariates are dis-
cussed. Ameaningful statistical model including IOP, OPP and SYS as non-redundant
covariates is obtained from a clinical dataset including 84 glaucoma patients and 73
healthy subjects, and is used to predict the probability that new individuals joining
the study may have glaucoma, based on the values of their covariates.
Results: Logistic models with satisfactory goodness-of-fit to the clinical dataset in-
clude age, gender, heart rate and either one of the following triplets as covariates:
(i)(SYS, DIA, OPP); (ii) (IOP, SYS, OPP); (iii) (IOP, SYS, DIA); or (iv) (IOP, SYS, MAP). Choos-
ing triplet (ii), higher disease probabilities are predicted for higher IOP levels. Similar
predictions in termsof diseaseprobability canbeobtained for di�erent combinations
of OPP, SYS and IOP.
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Conclusion: Multicollinearity does not allow to clearly estimate the single e�ect of
an individual covariate on the overall glaucoma risk. Instead, statistically assessing
the combined e�ects of IOP, OPP, and blood pressure provide useful predictions of
disease probability.

Keywords: glaucoma, generalized linearmodels, logistic regression,multicollinearity,
statistical methods, disease probability

1. Introduction

It is well known that elevated intraocular pressure (IOP) is a recognized risk factor for
glaucoma. Several other glaucoma risk factors have been suggested, among which
low blood pressure deserves particular mention. In order to combine the e�ects of
elevated IOP and low blood pressure, a synthetic index called ocular perfusion pres-
sure (OPP) has been proposed. The index is defined as OPP = (2/3)MAP − IOP,
where the mean arterial pressure (MAP) is defined as a linear convex combination of
the systolic pressure (SYS) and diastolic pressure (DIA), namelyMAP = (1/3)SYS +
(2/3)DIA. Thus, low values of the index OPP may be due to low MAP, elevated IOP
or a combination of the two. Whether and to what extent IOP, OPP, MAP, SYS and
DIA should be considered as risk factors for glaucoma is still a matter of debate in
glaucoma research1–3. The present article considers this question from the statistical
viewpoint and provides directions to its answer. The existence of formulas relating
IOP, OPP, MAP, SYS and DIA is indicative of an issue that in statistics is known asmul-
ticollinearity, occurring when one or more covariates are defined as a function of the
remaining variables. In this paper, we consider this issue from the theoretical view-
point and provide examples from a real clinical dataset. Our analysis shows that it is
the joint e�ect of all the covariates in the selected logistic model that determines the
glaucoma risk, rather than the value of an individual covariate.

2.Methods

2.1 Description of the dataset

Our dataset contains n = 157 individuals, including 84 glaucoma patients and 73
healthy subjects. The datawere collectedwithin the Indianapolis Glaucoma Progres-
sion study and other clinical studies at Eugene and Marilyn Glick Eye Institute, Indi-
anapolis (USA), directed by Prof. Alon Harris. The final goal of our statistical analysis
is to identify a meaningful set of covariates, i.e. clinical parameters, that provide a
good estimate of the probability that a new individual joining the study is a healthy
subject or is su�ering from glaucoma.

Let us introduce a glaucoma indicator for each individual in the dataset. Let i =
1, . . . , n, withn = 157, be the index identifying each individual in the dataset, and let
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yi be the glaucoma indicator for the i-th individual, with yi = 1 if the i-th individual
su�ers fromglaucoma and yi = 0 otherwise. The set of covariates considered for this
analysis are: age in years (Age), Gender (1 if female, 0 if male), heart rate (HR), IOP,
SYS, DIA, MAP and OPP. Empirical means of these variables and standard deviations
for continuous covariates are reported in Table 1. There are 88 women and 69men in
the sample.

Table 1. Empiricalmeans of all the covariates in the dataset; standarddeviations for continuous
variables are given between brackets.

Age Gender HR IOP
59.95 (11.38) 88 F (69 M) 71.22 (12.60) 16.15 (4.00)

SYS DIA MAP OPP
128.90 (18.32) 83.13 (11.21) 98.41 (12.46) 49.45 (9.39)

.

We recall that the following linear relationships exist among some covariates:

MAP = 1
3SYS + 2

3DIA, OPP = 2
3MAP− IOP = 2

9SYS + 4
9DIA− IOP, (1)

meaning thatMAP, SYS, DIA, OPPand IOParemulticollinear covariates. Lack of aware-
ness of multicollinearity may yield erroneous interpretation of statistical results4. A
nice concise, but non-technical, overviewof statistical problems thatmaybe encoun-
tered when covariates are multicollinear can be found in Tu et al5.

2.2 Logistic regressionmodels andmulticollinearity

The use of linear regressionmodels to investigate the e�ect of IOP, MAP and OPP has
recently been questioned. In this section, we aim at clarifying the main points of this
debate. Let us assume that the glaucoma indicator yi for each individual is the re-
alization of a random variable Yi, and that the individuals are independent. Let us
denote by πi the probability that Yi = 1 and let us assume that πi can be described
by a logistic regression model, so that we can write

P (Yi = 1) := πi, log( πi
1− πi

) = β0 + β1xi1 + · · ·+ βpxip, i = 1, . . . , n, (2)

where xij is the value assumed by the j-th covariate in the i-th individual. For exam-
ple, the model discussed in Khawaja et al6 considers two covariates, i.e. p = 2, with
xi1 =IOP and xi2 =OPP for each patient i. In (2), the coe�icients βj represent the
e�ect of the j-th covariate on the response (glaucoma indicator). Note that all the pa-
rametersβj , for j = 0, 1, . . . , p, are unknownand they are usually estimated from the
dataset {(yi, xi1, , xi2, . . . , , xip), i = 1, . . . , n} via standard statistical techniques,
such asmaximum likelihood estimate (MLE). The estimated values of the parameters
are denoted by β̂0, β̂1, . . . , β̂p. Since individuals are randomly sampled from a larger
population (i.e. from the world population), and a vector of covariate values identi-
fies subpopulations of individuals, from (2), it follows that each exponential eβj , for
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j = 1, . . . , p, represents the conditional odds ratio of two subpopulations of individ-
uals, one having the value of the j-th covariate fixed at some value x∗ + 1, and the
other having the value of the same j-th covariate equal to x∗ namely

eβj = odds if the covariate xij is incremented by 1
odds if the covariate xij is not incremented

, (3)

while keeping all other covariates fixed (i.e. adjusting for the other covariates). It is
common practice to drop the index i from the notation and simply write

xj := xij , Y := Yi, y := yi .

Thus, in mathematical terms, we can rewrite (3) as

eβj = P (Y = 1|xj = x+ 1, xl = x∗
l ) / (1− P (Y = 1|xj = x+ 1, xl = x∗

l ))
P (Y = 1|xj = x, xl = x∗

l ) / (1− P (Y = 1|xj = x, xl = x∗
l ))

(4)

where x∗
l are fixed values, with l = 1, . . . , p and l 6= j. Thus, βj quantifies the change

in the response variable Y (whose realization corresponds to the glaucoma indicator
y) for a unit change in the covariate xj when the rest of the covariates are fixed (or no
other covariatesarepresent). In thisperspective,βj is usually interpretedas thee�ect
of xj on the response (glaucoma indicator), while adjusting for the other covariates,
and β̂j is its estimated value.

This interpretation of βj does not extend to the case of multicollinear covariates,
which is indeed the case for IOP,MAPandOPP, as shownby the relationships in (1). Let
us clarify this issue bymeans of a simple example. Let us suppose that the glaucoma
indicator depends only on two covariates, say IOP and OPP. Thus, in this case p = 2,
x1 =IOP and x2 =OPP. According to (2), dropping the index i, the logarithm of the
odds of having glaucoma, i.e. log(π/(1− π)), is given by:

log π

1− π = β0 + β1 × IOP+ β2 × OPP (5)

thereby suggesting that β1 represents the e�ect of IOP (in the logit scale) on the glau-
coma indicator forOPP fixedand thatβ2 represents thee�ectofOPPon theglaucoma
indicator for IOP fixed. However, IOP and OPP are related to each other via (1); thus,
for IOP fixed, OPP can vary only if MAP varies, yielding:

log π

1− π = β0 + β1 × IOP+ β2 ×OPP

= β0 + β1 × IOP+ β2 ×
(

1
3MAP− IOP

)
= β0 + β2

3 × MAP+ (β1 − β2)× IOP.
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The last line suggests that the e�ect of IOP on the glaucoma indicator is represented
by the di�erence β1 − β2 for MAP fixed, which is a di�erent conclusion than that sug-
gested by (5). The controversial aspect related to the interpretation of logistic regres-
sion parameters for multicollinear covariates in glaucoma has been discussed in re-
cent works2,6. However, Khawaja et al6 erroneusly argue that the intrinsic relation-
ship between IOP and OPP precludes any useful interpretation of OPP as glaucoma
risk factor, whereas the issue is just that a di�erent statistical approach should be
used to properly account for the relationship between IOP and OPP when analizing
clinical data, as discussed in the next section.

2.3 Accounting for multicollinearity in statistical analysis

Multicollinearity does not allow, in general, to interpret the regressionparameters eβj

and their estimates eβ̂j as the e�ects of variations of single covariates, while keeping
all the others fixed. However, when analyzing a dataset, the main statistical ques-
tion should not be: “what is the meaning of the regression parameters in the logistic
model?”, rather “which covariates should be included in the logistic regression in or-
der to obtain a statistical model capable of predicting the response with good accu-
racy?”. The latter question does indeed make sense also in the case of multicollinear
variables, as discussed in classical Statistics textbooks (see, for istance, Section 4.6 of
the book by Agresti4).

For the specific example involving IOP and OPP discussed above, the statistical
question shouldnotbewhether or notβ2 describes thee�ect ofOPPon theglaucoma
indicator for fixed IOP (the answer is obviously no since OPP and IOP are intrinsically
related); rather, the real statistical question is whether OPP, IOP and blood pressure
should all be consideredas risk factors in glaucoma. On thegroundof statistical tools,
we prove that the answer to the last question is positive. In order to show this, we
need to: identify redundant covariates for the determination of the glaucoma indica-
tor (Step1); obtain statistical models that include only non-redundant covariates and
provide good estimates of the probability of having glaucoma for a new individual
joining the study (Step 2).

Step 1. The dependency of xj on the other covariates can be quantified using the
variance inflation factor (VIF). For the covariate xj , this factor is defined as VIFj =
1/(1−R2

j ), whereR2
j denotes the value of the indexR2 ∈ (0, 1) in a linear regression

model where the value of xj is determined by the other covariates (see, for istance,
Section 4.6.5 of the book by Agresti4). If xj is predicted very well by the other co-
variates in the linear model, thenR2

j ≈ 1 (the higherR2, the best is the correspond-
ing linear model in predicting the output); as a consequence, VIFj in this case will be
large. As a rule of thumb, the covariate xj is considered to be redundant if VIFj > 10.
By applying this simple rule to the covariates in the dataset described in Section 2.1,
we found that the VIF values were larger than 10 for IOP, SYS, DIA, MAP and OPP, as
expected.

Step 2. The outcomes of Step 1 imply that logistic models for the glaucoma in-
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dicator can include Age, Gender, HR, and only some covariates among IOP, SYS, DIA,
MAP and OPP. Actually, we could select any three covariates among the five above,
and would obtain a statistically significant model for any of these choices. The so�-
wareR is able to select the covariates througha stepwisebackwardeliminatingproce-
dure that starts from a complexmodel fitted to the dateset and sequentially removes
terms, such as the largest p-value in a test of significance, or the least deterioration in
the Aikake Information Criterior (AIC), which is a statistical tool tomeasure goodness-
of-fit4. For the dataset described in Section 2.1, the so�ware R found that, using the
stepwise backward eliminating procedure, the best model includes Age, Gender, HR,
SYS, DIA and OPP as covariates. The AIC in this case is optimal, but the same optimal
value of AIC is obtained when, in addition to Age, Gender, HR, we select either (IOP,
SYS, OPP) or (IOP, SYS, DIA) or (IOP, SYS,MAP). For all these fourmodels, the VIF values
for the covariates included in the model are similar (and all smaller than 10). In con-
clusion, these four models are equivalent in terms of goodness-of-fit measures and
measure of dependency among covariates. Therefore, we can choose any of these
four models in order to predict the probability of having glaucoma for a new individ-
ual entering the study with given values of the selected covariates.

3.Results

The outcomes of Steps 1 and 2 confirm that it makes perfect sense to consider either
(SYS, DIA, OPP), or (IOP, SYS, OPP), or (IOP, SYS, DIA), or (IOP, SYS, MAP) as sets of co-
variates in order to predict glaucoma probability, despite the existence of functional
relationships between them. In this section, we consider the model in equation (2)
for p = 6 and covariates xij , j = 1, . . . , 6, given by Age, Gender, HR, IOP, SYS and
OPP, respectively, measured for all patients i in the dataset; as usual, independence
among patients is assumed. The fitted coe�icients are β̂0 = −16.905, β̂1 = 0.107,
β̂2 = −1.160, β̂3 = −0.036, β̂4 = 0.177, β̂5 = 0.120, β̂6 = −0.089. We use this
model to predict the probability of having glaucoma for a new female patient, aged
60 andwithHR= 71, joining the study. Table 2 shows that, for given values of OPP, SYS,
Age and Gender, di�erent disease probabilities are predicted depending on the level
of IOP. In particular, higher IOP levels correspond to higher probabilities of having
glaucoma. On the other hand, similar predictions in terms of disease probability can
beobtained for di�erent combinations ofOPP, SYS, IOP (within the ranges of values in
our dataset), suggesting that these covariates should all be considered as important
risk factors in glaucoma.

We remark that including diastolic blood pressure in the model would also be an
option, as indicated by the cases (SYS, DIA, OPP) and (IOP, SYS, DIA) at the beginning
of Section 3. However, we cannot simultaneously include all the covariates in the
same statisticalmodel becauseof the relationship among them, i.e. multicollinearity.
It is important to emphasize that removing some of the covariates from the statisti-
cal model does not mean that the model does not account for that covariate; rather,
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Table 2. Predicted disease probabilities for new female patients, aged 60, HR= 71. For OPP and
SYS fixed, higher values of IOP correspond to higher probabilities of having glaucoma (le� side
of the Table). However, similar disease probabilities are obtained for di�erent values of the
covariates (right side of the Table).

OPP SYS IOP Disease prob Disease prob OPP SYS IOP
43 129 12 0.678 0.673 52 134 13
43 129 16 0.811 0.809 34 132 10
43 129 20 0.897 0.899 20 115 20

.

variations in that covariate are accounted for through variations in the other collinear
variables in the model.

4. Conclusions

The main question motivating our work is whether IOP, OPP and blood pressure
should all be interpreted as risk factors in glaucoma. Based on the statistical tech-
niques and analysis reported in this article, our answer is that it is the joint e�ect of
IOP, OPP and blood pressure, or, more precisely, of all the covariates in the selected
logistic model, that determines the probability of disease, rather than the value of an
individual covariate. Importantly, the main statistical interest should be the predic-
tion of disease probabilities for new patients entering the study, presenting specific
values of the covariates included in the model, rather than the estimated individual
e�ect of a single predictor.
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