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Abstract

Purpose: This study presents a novel application of the semianalytical residual power
series method to investigate a one-dimensional fractional anisotropic curvature
equation describing the human cornea, the outermost layer of the eye. The fractional
boundary value problem, involving the fractional derivative of curvature, poses chal-
lenges that conventional methods struggle to address.
Methods: The analytical results are obtained by utilizing the simple and efficient
residual power series method. The proposed method is accessible to researchers in
all medical fields and is extendable to various models in disease spread and control.
Results: The derived solution is a crucial outcome of this study. Through the applica-
tion of the proposed method to the corneal shape model, an explicit formula for the
curvature profile is obtained. To validate the solution, direct comparisons are made
with numerical solutions for the integer case and other analytical solutions available
in the literature for the fractional case.
Conclusion: Our findings highlight the potential of the proposed method to signifi-
cantly contribute to the diagnosis and treatment of various ophthalmological condi-
tions.

Keywords: corneal radius, fractional-order differential equations, nonlinear bound-
ary value problem, semianalytic residual power series
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1. Introduction

Mathematical modeling stands as a potent approach in comprehending the kinetics
of current intricate phenomena in the realms of physical, biological, and environmen-
tal sciences. As a result, researchers are increasingly employing mathematical model-
ing techniques to garner new insights and facilitate the refinement of system designs
and controls.1–5

Experimental and theoretical research has concluded that corneal biomechan-
ics relies on geometrical measurements and concrete theories of mechanics, in-
cluding concepts of equilibrium, geometrical measurements, and complex material
behaviors.6 For example, Pinsky and Holliday utilized a three-layer corneal geometry
with a hydrogel inlay placed under a lamellar flap to describe cellular consumption of
oxygen and glucose and production of lactic acid.7 Pandolfi and Manganiello studied
a numerical model for the human cornea that is able to account for its mechanical
behavior in healthy conditions or in the presence of keratoconus under increasing
values of intraocular pressure.8 Other numerical models in this field include the
biomechanics of the human cornea,9 and a 3D fluid-solid interaction model of the
air-puff test in the human cornea.10 Additional computational models in several areas
of ophthalmology have been presented11–14 as well as in the references therein.

Evidently, accurate corneal modeling plays a critical role in guiding therapeutic
and diagnostic interventions for a range of ocular abnormalities, including cataract,
glaucoma, and refractive errors. Existing models have encountered challenges in
effectively capturing long-range dependencies and achieving sufficient accuracy in
corneal shape analysis. This article showcases an effort to overcome this pitfall by
considering a fractional model with a simple effective approach to obtain an analyti-
cal result to further reflect on the geometric dimensions of the cornea.

Fractional differential equations have gained prominence in recent research, serv-
ing as effective tools to model natural phenomena in various fields, including bio-
logical systems,15,16 infectious diseases,17,18 fluid flow,19 biochemical reactions,20 and
control theory.21 Due to the inherent nonlocal property of fractional derivative opera-
tors, fractional models prove adept at describing memory and hereditary properties
of various materials and processes. For example, fractional calculus has been used
to model diffusion processes, where the nonlocal property of the fractional deriva-
tive reflects the long-range interactions of particles in a medium.22 Additionally, it
has been employed in the study of complex systems and signal processing, with the
nonlocal property of the fractional derivative adeptly capturing the long-range corre-
lations within the system or signal.23

While exact solutions to nonlinear fractional-order differential equations re-
main elusive, numerous numerical and analytical methods, originally designed
for integer-derivative differential equations have been adapted to address their
fractional-derivative counterparts. Noteworthy among these methods are the frac-
tional Adams-Bashforth-Moulton method,24 the fractional predict-correct method,25

various spectral methods,26,27 and artificial network methods.28,29 While these meth-
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ods demonstrated efficiency and accuracy, they are not without challenges, such as
issues of numerical schemes and the necessity to adjust parameters to align with
numerical data.30

Among the analytical methods recently applied to solve fractional-derivative
equations are the homotopy analysis method,31 homotopy perturbation method,32

differential transform method,33 Green’s function-fixed point method,34 and cubic
spline method.35 These methods contribute to the expanding toolkit for dealing with
the complexities inherent in nonlinear fractional-order differential equations.

The power series method (PSM) is a valuable mathematical technique for solving
differential equations, expressing the solution as a series of powers of the indepen-
dent variable. By directly substituting this power series into the differential equation,
a recursive formula for determining the series coefficients is derived. Initially applied
to solve fractional differential equations by El-Ajou et al. in 2013,36 the PSM under-
went an effective modification in the same year by Abu Arqub,37 resulting in what is
known as the residual power series method (RPSM). Distinguished by its capability to
present solutions with a desired accuracy through the minimization of residual errors,
the RPSM determine coefficients of the truncated series solution via the recursive so-
lution of a system of algebraic equations. This method will be detailed in Section 3.

The remainder of this article is structured as follows: Section 2 summarizes all
the theoretical preliminaries. Section 3 delves into the mathematical model of the
human cornea, setting the stage for a comprehensive understanding of the subject.
Section 4 discusses the existence and uniqueness of the model solution, paving the
way for a thorough exploration of the analytical solution presented in Section 5. In
this latter section, the effects of parameters on the model will be systematically in-
vestigated, contributing to a more nuanced comprehension of the intricate dynamics
involved.

2. Preliminaries

This section introduces the fundamental tools of fractional calculus that will be nec-
essary for the remaining parts of this work.

Definition 1. For m − 1 < α ≤ m, and m ∈ N, the αth order Riemann-Liouville frac-
tional integral of the real-valued function f : R+ → R, denoted Jα

t0
f(t), is defined

by:

Jα
t0

f(t) = 1
Γ(α)

∫ t

t0

(t − s)α−1f(t)dt, α > 0, t > 0. (1)

and the αth-order Caputo fractional derivative of f(t), denoted CDα
t0

is defined by:

CDα
t0

f(t) = Jm−αDmf(t). (2)

Henceforth, the Caputo fractional derivative of order α will be denoted Dα
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Remark. Based on Definition 1, a more concise expression for Dα
t0

f(t) can be stated
as:

Dαf(t) =


1

Γ(m−α)
∫ t

t0
(t − s)m−α−1f (m)(s)ds, if m − 1 < α < m

f (m)(t), if α = m ∈ N
. (3)

Remark. The following power rule is a natural consequence of Caputo definition. Let
f(t) = tp, m − 1 < α < m, then:

Dαf(t) =


Γ(p+1)

Γ(p−α+1) tp−α, if p > m − 1

0, if p ≤ m − 1
. (4)

Definition 2. For 0 ≤ m − 1 < α ≤ m and t ≥ t0, where m ∈ N, a fractional power
series expansion about t0 for a real valued function f(t) is given by:

f(t) =
∞∑

n=0
cn(t − t0)nα, (5)

The proof of the following theorem can be found in Ajou et al.36

Theorem 1. Suppose that f(t) has the power series representation given in Equation
(5), where t0 ≤ t < t0 + R, in which R is the radius of convergence. Suppose further
that Dnα

t f(t) ∈ C(t0, t0 + R), then the coefficients cn are computed by:

cn =
Dnα

t0
f(t0)

Γ(nα + 1) , (6)

where n = 0, 1, · · · , m + 1.

3. The fractional corneal shape model

As shown in Figure 1,38 the cornea, the slightly raised part of the eyeball, is a trans-
parent dome-shaped structure that envelops the front of the eye. It is the most
important refractive surface, accounting for two-thirds of the refractive power of the
eye. It is an extremely reactive and sensitive structure as it has more nerve endings
than anywhere else in the body. Hence, it is obvious that any change in the corneal
structure, radius, or contour can significantly contribute to a set of refractive errors
and diseases.39 Additionally, it is important to understand that measurements of
corneal parameters can help guide therapeutic and diagnostic purposes. Studies
have shown that a microcornea, i.e., a cornea with a small diameter, is usually asso-
ciated with ocular abnormalities such as cataract formation, iris abnormalities, sec-
ondary closed-angle glaucoma, optic nerve hypoplasia, and scleroderma.40,41 Micro-
cornea is also associated with Fuchs dystrophy and macular corneal dystrophies.40,41
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When it comes to a megalocornea, i.e., a cornea with a large diameter, studies have
shown that it is associated with cataract, astigmatism, myopia, and can even progress
to lens dislocation and glaucoma later in life.40,41 Megalocornea was also noted to be
seen in keratoconus as well as lattice and granular dystrophies.40,41 When focusing
on the radii of the cornea, studies have found that a cornea that is too curved (ab-
normally small radii) is also found in keratoconus, whereas a cornea that is too flat
(large radii) is found in conditions such as cornea plana, a rare bilateral condition
associated with severe refractive defects, cataract, and even coloboma.42

Fig. 1. Radius of corneal curvature.

It is worth noting that several studies highlighted the importance of consider-
ing the axial length (AL) and corneal radius of curvature (CRC) as interdependent
variables, as the interaction of the two is what helps establish the emmetropiza-
tion process.43–45 Hence, expressing them as an AL/CRC ratio is more effective. A
study conducted by Iyamu et al. showed that the AL/CRC ratio obtained was 3.16 (SD
0.12) for myopes, 2.95 (SD 0.07) for hyperopes, and 2.96 (SD 0.07) for emmetropes.46

This suggests that myopes have a higher AL/CRC ratio than hyperopes and em-
metropes. To give another example about the importance of corneal topographers
and pachymeters, patient-specific corneal geometry obtained through advanced
3D imaging enables accurate simulation of refractive surgery-induced changes and
assessment of postoperative corneal shape and refractive power.8 These examples
provide concrete proof that understanding corneal geometry parameters can help in
categorizing the refractive status and in guiding diagnostic purposes.

The mathematical model describing the corneal shape is given by the nonlinear
boundary value problem (BVP):47

u′′(t) − Au(t) + B√
1 + u′(t)2

= 0, (7)
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subject to Dirichlet boundary conditions (BC):

u′(0) = 0, u(1) = 0, (8)

where u(t) is a meridian of a surface of revolution describing corneal geometry and
the parameters A, B are positive real numbers that are complex in their dependency
on various physical and biological factors, including corneal radius.

Various successful attempts to find analytic and numerical approximate solutions
to the BVP in Equations (7) and (8) were proposed by some authors. To mention a few,
an approximate hyperbolic cosine solution was obtained in Okrasiński et al.,47 the
perturbation approach was employed in Plociniczak et al.,48 Taylor series approach
and variational iteration method were discussed in He,49 and Green’s function-fixed
point approach was discussed in Abukhaled et al.50 The advantages outlined in the
Introduction, given by the nonlocality of the fractional derivative operators, in addi-
tion to the fact that Caputo fractional derivative operator is known to preserve the
initial and BCs in the fractional counterpart of the integer model, provide a concrete
justification for modifying the BVP in Equations (7) and (8) into the following Caputo
fractional boundary value problem (FBVP) that models the human corneal topogra-
phy:

D2αu(t) − Au(t) + B√
1 + (Dα(u(t)))2

= 0, (9)

where 0 < t < 1, and 0.5 < α ≤ 1. The BCs remain as given in Equation (8).

4. Existence and uniqueness of the solution

In this section, we provide a sketch of the proof of the existence and uniqueness of the
solution to the fractional DE in Equation (9) subject to the BCs in Equation (8). Details
of the proof can be found in Erturk et al.51

Theorem 2. If
max

{
A, 2

√
3B

9

}
Γ(α + 1) < 1 then there exists a unique solution to the FBVP in

Equation (9) subject to BCs in Equation (8).

Sketch of the proof

1. The function f(t) = Au(t) − B√
1+(Dαu(t))2

is continuous on I = [0, 1]. Let

C(I) denote the set of all continuous functions on I, and define B and ∥u∥B as
follows:

B = {u(t) : u(t) Dαu ∈ C(I), 0.5 < α ≤ 1}, and

∥u(t)∥B = sup
t∈I

|u(t)| + sup
t∈I

|Dαu(t)|.

It is straightforward to prove that (B, ∥∥B) is a Banach space.
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2. If h(t) ∈ C(I) and 0.5 < α ≤ 1, then the fractional BVP:

D2αu(t) = h(t), u′(0) = 0, u(1) = 0 (10)

has the unique solution:

u(t) =
∫ 1

0
G(t, ξ)h(ξ)dξ, (11)

where:

G(t, ξ) =


(t − ξ)2α−1 − (1 − ξ)2α−1

Γ(2α) , if 0 ≤ ξ ≤ t ≤ 1

−(1 − ξ)2α−1

Γ(2α) , if 0 ≤ t ≤ ξ ≤ 1

. (12)

3. The function u ∈ B is a solution of the FDE in Equation (9) subject to BCs in
Equation (8), provided that u is a solution of the following integral equation:

u(t) =
∫ 1

0
G(t, ξ)

(
Au(ξ) − B√

1 + (Dα(u(ξ))2

)
dξ. (13)

4. There exists a positive constant γ such that:

Au(t) − B√
1 + (Dα(u(t))2

≤ A|u(t)| + B|Dαu(t)|γ (14)

5. The uniqueness of the solution follows by employing the contraction mapping
principle.

5. Residual power series method

In this section, we utilize the RPSM to derive a semianalytic solution to the FBVP in
Equation (9) subject to BC in Equation (8). Let Ru(t) be the residual function for Equa-
tion (9). Then:

Ru(t) = D2αu(t) − Au(t) + B√
1 + (Dαu(t))2

, (15)

where u(t) is the fractional power series solution about t0 = 0 of Equation (9) given
by:

u(t) =
∞∑

n=0
cn

t2nα

Γ(1 + 2nα) . (16)
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Here 0.5 ≤ α < 1 and 0 ≤ t < r
1

2α , where r is the radius of convergence for the series
in (16). Assume that u(0) = a, where a will be determined from the BC u(1) = 0. By
utilizing the BC u′(0) = 0, the kth truncated series solution in Equation (16) becomes:

uk(t) = a +
k∑

n=2
cn

t2nα

Γ(1 + 2nα) . (17)

Denoting the corresponding residual function for the approximate solution in Equa-
tion (17) by Ruk(t), we obtain:

Ruk
(t) = D2αuk(t) − Auk(t) + B√

1 + (Dαuk(t))2
. (18)

As seen previously,35,36 we have Ru(t) = 0 and lim
k→∞

Ruk
(t) = Ru(t) for 0 ≤ t <

r
1

2α . Since the Caputo fractional derivative of a constant is zero, then D(2α)nRu(t) =
0, and hence:

D(2α)nRu(0) = D(2α)nRuk
(0), n = 0, 1, · · · , k (19)

The determination of the coefficients cn in the truncated series solution can be ob-
tained by solving the system of algebraic equations generated by:

D(2α)(k−1)Ruk
(0) = 0, k = 1, 2, · · · (20)

6. Results and discussion

We begin by verifying the accuracy of the approximate solution of the FBVP in Equa-
tion (9) derived by RPSM against the numerical solution obtained by the fourth-order
Runge-Kutta method (RK4) for the integer case α = 1 and the parameters A = B = 1.

Substituting Equation (17) into Equation (18) gives:

Ruk
=

k∑
n=2

n(n − 1)cn tn−2 −
k∑

n=0
cn tn + 1√

1 +
(∑k

n=1 ncntn−1
)2

. (21)

The coefficients cn, n = 0, 1, · · · , k will be obtained by solving the algebraic system:

dk−2

dtk−2 Ruk
= 0, k = 2, 3, · · · . (22)

coupled with the implementation of the BCs (8) and the assumption that u(0) = a.
For example, with k = m, Equation (22) will yield m−1 in m+1 unknowns including
a, which results from the assumption that u(0) = a. The other two equations, in this
case, are driven by the BCs u′(0) = 0 and u(1) = 0, which respectively imply that
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c1 = 0 and a + c1 + c2 + · · · + cm = 0. For k = 5, 10, and 15, the residual power
series solution for the integer case were found to be:

u5(t) = 0.3395627 − 0.3302186t2 − 0.009344162t4 (23)
u10(t) = 0.3406783 − 0.3296608t2 − 0.009359024t4 − 0.001851326t6 (24)

+0.0002812365t8 − 0.00008834878t10

u15(t) = 0.3406657 − 0.3296671t2 − 0.009358858t4 − 0.001851499t6 (25)
+0.0002813t8 − 0.0000884t10 + 0.0000288t12 − 0.00001t14

Note that the value of a, assumed for the BC u(0) = a, is the constant term in
each of the above approximate series solutions. Figure 2 reflects the high accuracy
of the approximate residual power series curve when compared to the fourth-order
Runge-Kutta curve for t ∈ [0, 1] and α = 1, and Table 1 confirms this conclusion.

Fig. 2. RK4 curve and 5th-iteration RPSM curve of the FBVP in Equation (9) for the integer case
α = 1 with A = 1 and B = 1.

Figure 3 shows the approximate solution obtained by the RPSM for the FBVP in
Equation (9) on [0, 1] for the fractional values of α = 0.95, 0.9, 0.85, and 0.8 and A =
B = 1. It is inferred that the hereditary property is preserved when comparing these
fractional derivative curves with the integer derivative curve (α = 1.)

The effect of the parameters A and B, which are related to the radius of the
cornea, on the corneal geometry is evident from Figures 3-6. The increase of A and
B leads to an increase of the value a representing the initial condition of the surface
of revolution describing the corneal geometry.
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Table 1. Absolute error for the approximate solution of example 1 for α = 1 on the interval
0 ≤ t ≤ 1.

t u5(t) u10(t) u15(t)
0.0 0.001100959 0.000014575 0.000002052
0.1 0.001106561 0.000014547 0.000001962
0.2 0.001122893 0.000014811 0.000002037
0.3 0.001149094 0.000015187 0.000002102
0.4 0.001181340 0.000015648 0.000002127
0.5 0.001209874 0.000016258 0.000002184
0.6 0.001215245 0.000016973 0.000002265
0.7 0.001163618 0.000017564 0.000002325
0.8 0.001001447 0.000017353 0.000002388
0.9 0.000650116 0.000013844 0.000002117
1.0 0 0 0

(a) Approximate solution on [0, 1]
(b) Zoomed approximate solution on
[0.8, 0.85]

Fig. 3. Approximate RPSM curves of the FBVP in Equation (9) with A = B = 1 and various
fractional values of α.
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(a) (b)

Fig. 4. Approximate RPSM curves of the FBVP in Equation (9) with A = 1.72, B = 1.6 and
various fractional order values of α.

(a) (b)

Fig. 5. Approximate RPSM curves of the FBVP in Equation (9) with A = 1.38, B = 1.31 and
various fractional order values of α.

(a) (b)

Fig. 6. Approximate RPSM curves of the FBVP in Equation (9) with A = 1.6, B = 1.7 and various
fractional order values of α.
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7. Conclusion

In this paper, we investigated a mathematical model describing the corneal shape
through a Caputo FBVP. Building upon a study presented in Okrasiński et al.,47 which
derived an integer-order nonlinear BVP assuming radial symmetry for the cross-
section of the cornea, we addressed the following two main objectives:

1. Recognizing the importance of considering long-range dependencies in the
study of corneal shape, we employed the fractional derivative operator.

2. We utilized the highly accurate and easily implemented fractional RPSM to de-
rive a semianalytic solution.

The derived semianalytic solution provides valuable insights into the influence of
corneal parameters on ocular health and disease, offering potential applications in
early detection and monitoring.

Overall, our findings underscore the importance of integrating mathematical
modeling techniques with clinical practice to enhance our understanding and man-
agement of corneal abnormalities.
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