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Abstract

The relationship between structural damage and functional loss in glaucoma is of 
great importance for its diagnosis and management. The functional status is usually 
assessed through visual field examination, a subjective test that is burdensome 
and time-consuming. Moreover, it depends on patients’ answers and there is a 
learning curve until accurate and reliable measurements are possible. Structural 
assessment, on the other hand, has remarkably improved since the development 
of optical coherence tomography, a fast test that allows for objective and quanti-
tative analysis of retinal layers. The relationship between the two tests, however, 
is complex and nonlinear, and is influenced by interindividual variability. Thus, 
qualitative evaluation or the use of conventional statistics might not be appropriate. 
In recent years, we have seen a remarkable evolution of artificial intelligence 
algorithms and deep learning models. These techniques have proved adequate to 
model such complicated relationships. In this review, we summarize studies that 
investigate the structure and function relationship in glaucoma making use of 
artificial intelligence and deep learning, the challenges associated with predicting 
visual field information from structural measurements, and the strategies adopted 
to improve their accuracy.
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1. Introduction

Glaucoma is a progressive optic neuropathy in which the death of retinal ganglion 
cells, and corresponding axons in the retinal nerve fiber layer (RNFL), leads to char-
acteristic visual field (VF) defects.1 The relationship between structural damage 
and glaucomatous VF loss is essential to diagnose glaucoma and to differentiate 
it from other diseases that may affect the retina and the visual pathways. The 
evaluation of the VF in clinical practice is performed through standard automated 
perimetry (SAP), which is a burdensome and time-consuming test with high 
test-retest variability that is inherent to testing strategies.2,3 Yet, there is still no 
better way to investigate the functional loss in glaucoma.

With the advent of optical coherence tomography (OCT), it became possible 
to perform a quantitative analysis of the thickness of retina layers, such as the 
ganglion cell layer and the RNFL. OCT identifies glaucomatous damage with more 
accuracy than the qualitative assessment of fundus photos and even before the 
development of detectable VF defects.4 It is a faster test than SAP, it does not rely 
on patient collaboration, and has lower test-retest variability. The relationship 
between the two tests, however, is complex and nonlinear, and they are generally 
used in a complementary fashion.

Recent advances on artificial intelligence (AI), with more complex algorithms 
and techniques such as deep learning (DL), have allowed predictions and classifi-
cations from images and other types of data with human-level accuracy, in some 
cases even more accurate. In ophthalmology, it has been applied to diagnose 
retinal diseases and other conditions. In glaucoma, one of the proposed uses 
of AI and DL is to investigate the structure-function relationship, in particular 
to estimate VF data from OCT measurements. The purpose of this review is to 
summarize studies that describe algorithms and DL models that predict SAP 
summary metrics or individual sensitivity threshold values from OCT measure-
ments of retinal layers.

2. Prediction of visual field summary metrics

SAP summary metrics are useful to gauge the severity of the disease, as well as to 
monitor the progression through trend analysis. A few studies have shown that it 
is possible to estimate the values of SAP summary metrics, such as mean deviation 
(MD), pattern standard deviation (PSD) and VF index (VFI), using DL models based 
on retinal thickness data, measured with OCT.

In a work by Christopher et al.,5 a DL algorithm was developed to predict 
MD, PSD, and pattern deviation (PD) averages for sectors derived from the Gar-
way-Heath structure and function map.6 They investigated the performance of 
DL models using three different inputs: RNFL thickness maps, RNFL enface, and 
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confocal scanning laser ophthalmoscope (CSLO) images. To predict SAP MD, the 
best performance was achieved using RNFL enface images as input. The mean 
absolute error (MAE) was 2.5 dB and the R2 with measured values was 70%, while 
for RNFL thickness map the values were 2.8 dB and 63%, and for CSLO images 
the values were 3.1 dB and 48%. All DL models were superior to the predictions 
using macular RNFL thickness (MAE = 3.8 dB; R2 = 40%) and circumpapillary RNFL 
thickness (MAE = 3.7 dB; R2 = 45%). The RNFL enface images model was also the 
best one to predict PSD and the sectoral PD averages, except for the central 
region, in which the CSLO model achieved the best performance.

Yu et al. developed a three-dimensional convolutional neural network 
(3D-CNN) model to predict SAP VFI and MD from OCT volumes centered at the 
macula, the ONH or both.7 The median estimate’s errors for SAP VFI were 3.11% 
and 3.53% for the models that used the volumes centered at the macula and 
the optic nerve head (ONH), respectively. The model that used both volumes as 
input had a median error of 2.70%. To estimate the SAP MD, the model that used 
both volumes also achieved the best performance, with a median error of 1.57 
dB, while the model with macula or ONH volume as input had median errors of 
1.63 dB and 1.86 dB, respectively. Interestingly, although combining the macula 
and ONH centered volumes improved the overall performance of the DL model, 
the improvement was particularly better for more advanced disease, where the 
estimations had higher errors, both for VFI and MD. In a work from the same group 
of authors, George et al. showed a similar performance to estimate SAP VFI from 
ONH centered volumes, although the main goal of their work was to detect glau-
comatous VF defect.8

While the studies presented above showed complex DL models, using different 
types of inputs, the work done by Huang et al. showed a model that predicted 
SAP MD from the RNFL thickness averaged into 64 sectors.9 Although they use a 
simpler model, its performance in their internal test set was comparable to those 
of the previous studies, with a MAE of 4.0, a root mean squared error (RMSE) of 5.2, 
and a median absolute error of 3.1 dB. They also showed the results of external 
validation in three different datasets, with similar results in two of them. The third 
external dataset had data extracted from a different OCT machine than the one 
used to train the model. Not surprisingly, the predictions had larger errors and 
lower correlation with the actual SAP MD. This finding underscores the lack of 
generalizability regarding the source of information, i.e., models trained with data 
from one OCT cannot be used to analyze data from a different OCT.

In summary, the DL models currently available in the literature show that it is 
possible to accurately predict SAP summary metrics from structural data derived 
from OCT measurements. Different strategies have been employed to improve the 
predictions. Although they present good overall performance, there is a trend for 
higher errors in more advanced disease, which can be a result of higher variability 
or lower availability of data, both expected to impact a model’s performance. 
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Nonetheless, they have the potential to provide functional information for patients 
that are incapable of VF testing, or even increase the information available without 
the burden of additional testing. 

3. Prediction of 24-2 visual field sensitivity threshold values

Although summary metrics offer useful information about the VF, they have limited 
value to define the location and the pattern of the glaucomatous defect, which 
can be assessed by the determining threshold values in all points tested by the 
24-2 SAP. Predicting the whole 24-2 SAP, however, is a harder task than predicting 
summary metrics, because they are much more influenced by test-retest variability 
and individual variations. Nevertheless, many previous studies have attempted to 
predict the 24-2 SAP sensitivity threshold values from structural information.

The first attempts to use AI algorithms for this task were reported by Zhu et al.10,11 
In their works, they present the development of a machine learning algorithm, 
namely a Bayesian radial basis function, to predict the 24-2 SAP using RNFL 
thickness information from scanning laser polarimetry. Their algorithm was able to 
accurately predict the sensitivity threshold values with a MAE of 2.9 dB, a far superior 
performance than that of a linear regression model (MAE = 4.9 dB), developed for 
comparison purposes. There was a trend towards larger prediction errors in lower 
sensitivity values, although the predictions were within test-retest limits,2 and 
clearly more accurate than the ones from the linear model. The superiority of the 
machine learning algorithm could also be noted in the gray scale images presented 
in the study.

With the emergence and increasing access to OCT technology, new studies 
attempted to estimate the VF from structural glaucomatous damage. Guo et 
al. developed a machine learning algorithm to predict the 24-2 SAP sensitivity 
threshold values from RNFL and ganglion cell layer plus inner plexiform layer (GCL 
+ IPL) thickness measured by OCT.12 In their study, a wide field composite OCT was 
acquired and divided into 54 sectors to match the locations tested by 24-2 SAP. They 
used different strategies to select which sectors of each layer would result in better 
predictions. The best performance was achieved by the model that included the GCL 
+ IPL thickness of the VF location to be predicted and the RNFL thickness of sectors 
along the axonal route to the optic disc, a strategy they called “retinal ganglion 
cell axonal complex (RGC-AC) optimized”. They reported a correlation of 0.74 
between the estimated and the real values, and a RMSE of 5.42 dB. In a qualitative 
assessment, the predicted VFs presented patterns and degrees of defects that were 
similar, although not identical, to the actual VFs.

Subsequent studies have relied on DL models for such task. Mariottoni et al 
developed a one-dimensional CNN to predict the 24-2 SAP results based on circump-
apillary RNFL thickness, measured by spectral domain (SD)-OCT.13 The predictions 



Fig. 1. Example of a case where the convolutional neural network (CNN) was able to predict 
the VF accurately using the retinal nerve fiber layer (RNFL) measurements. In the case 
illustrated, there is a large inferior temporal defect on the RNFL (left), that manifested on 
the VF as a superior arcuate defect (A, right). The CNN predicted a VF with a defect of similar 
shape and depth (B, right).
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of their model had a correlation of 0.60 with measured values and a MAE of 4.25 
dB, which was better than a linear model developed for comparison purposes 
(correlation of 0.52 and MAE of 4.96 dB). Figure 1 shows an example of a predicted 
VF from RNFL thickness data compared to the actual VF. Their main goal, however, 
was to develop a structure-function map based on the information captured by 
their model. To achieve that, artificial defects were simulated in a normal RNFL 
thickness profile on different locations and varying depths. The CNN was used to 
predict the VF based on the simulated RNFL profile and, as a result, the predictions 
showed the VF defect expected for each artificial RNFL thinning (Fig. 2). With a 
similar approach, Datta et al. developed a recurrent neural network (RNN) that 
analyzed the circumpapillary RNFL thickness, but used anatomic knowledge to 
improve predictions.14 Their results were similar to those described by Mariottoni 
and colleagues.

While Mariottoni and Datta relied on circumpapillary RNFL thickness, other 
authors used OCT images as inputs to their models. Park et al. combined the 
macular GCL + IPL and peripapillary RNFL thickness maps as one image and 
developed a DL model to predict the 52 sensitivity values from 24-2 SAP.15 The mean 
RMSE of their predictions was 4.79 dB and they were higher for eyes with glaucoma 
than healthy eyes (5.27 vs 3.27 dB). The prediction errors were also correlated 
with severity markers, namely SAP MD, macular GCL + IPL and peripapillary RNFL 
thickness, suggesting that predicting lower sensitivity values is a harder task. 
Subsequent studies from the same group compared different architectures for 
the DL model and different OCT technologies (SD and swept-source [SS] OCT).16,17 
Among the architectures tested, Inception-ResNet-v2 was superior to Inception-
v3 and Inception-v4. Although the prediction errors were significantly lower, they 
were probably not clinically relevant. Furthermore, their findings may be specific 



Fig. 2. Patterns of visual field loss predicted from the convolutional neural network when 
simulating retinal nerve fiber layer (RNFL) defects in the superior hemiretina. The RNFL 
profile is shown on the left, with dashed vertical lines showing the location of each simulated 
RNFL defect. For each simulated defect in a particular location, there were three simulated 
depths representing the 10th (p10), 5th (p5), and 1st (p1) percentiles. The corresponding 
predicted standard automated perimetry pattern deviation plots are shown on the right.
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to the dataset available for development and evaluation of the DL models. On the 
other hand, the DL model developed to analyze SS-OCT images showed a better 
performance than the SD-OCT model, which was justified by the larger area scanned 
by SS-OCT in comparison to SD-OCT. There was also an imbalance of training data 
available for each device, which could also have influenced their performance.

The studies presented above confirm that predicting the sensitivity threshold 
values for each location tested by the 24-2 SAP is a harder task than predicting 
summary metrics such as MD and VFI. The higher test-retest and interindividual 
variabilities negatively influence the performance of DL models, especially in lower 
ranges of measured values. However, the performance shown by these algorithms 
indicate that it is possible to acquire information about the functional status based 
on structural information, which could be useful when actual VF testing is not 
possible. 

4. Prediction of 10-2 visual field sensitivity threshold values

Although the mainstay of functional testing in glaucoma is the 24-2 SAP, testing the 
central 10 degrees of the VF is beneficial in cases of advanced glaucoma, where most 
of the peripheral vision is lost, or in early cases, in which the 6-degree spacing of the 
24-2 SAP may miss a small paracentral glaucomatous defect. However, to test both 
24-2 and 10-2 SAP is costly and burdensome. An alternative would be to predict the 
10-2 SAP from OCT measurements assisted by DL models. The studies presented 
bellow describe the development of such DL models, all done by the same group of 
authors. They focused on the macular scan, rather than peripapillary RNFL, given 
the overlap between the regions tested and the good correlation between retinal 
layer thicknesses and the sensitivity threshold values of the central 10 degrees of 
the VF.18,19

In their first attempt to predict 10-2 SAP from OCT, Sugiura and colleagues 
developed a DL model to predict the 68 sensitivity values from 10-2 SAP from the 
thickness of three retinal layers in the macula: the RNFL, the GCL + IPL, and the rod 
and cones layer.20 In order to improve the predictions of the DL model, they used 
unpaired VF data and unsupervised learning to create patterns of glaucomatous VF 
defects. Those patterns were used as regularization of the predictions. The result 
of this pattern-based regularization was an improvement of the RMSE from 6.76 to 
6.16 dB. This model was later validated with an external dataset in a work presented 
by Hashimoto and colleagues.21 The prediction’s errors were slightly higher in the 
external validation (MAE = 5.47 dB) in comparison to the internal validation (MAE 
= 4.71 dB), but the DL model still outperformed other machine learning models 
presented in the study. 

Subsequently, the same group proposed methods to improve the accuracy of 
the DL models. In a work by Xu et al., they applied a tensor regression on top of a 
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CNN and compared it to a regular CNN.22 The proposed method was able to improve 
predictions, reducing the RMSE from 6.76 to 6.32 dB. In a subsequent work, Asano 
and colleagues used the sensitivity threshold values of the four most central points 
tested by 24-2 SAP, all within the central 10 degrees, to correct the 10-2 predictions.23 
The increase in accuracy translated as an improvement of the MAE from 9.4 to 5.3 
dB. In a similar study, Hashimoto et al. combined the pattern-based regularization 
and the 24-2 SAP correction.24 They found a MAE of 5.3 dB with pattern-based regu-
larization alone versus 4.2 dB when combined with 24-2 SAP correction. 

A common feature of all studies presented above was the decline in performance 
when predicting lower sensitivity values, which was also true in DL models to predict 
summary metrics and 24-2 SAP sensitivity threshold values. This is likely due to 
higher test-retest variability and smaller frequency of examples in the training data. 
In addition, there was a small number of eyes to evaluate the DL models, probably 
due to the lesser frequency in which the 10-2 SAP is tested, in comparison to 24-2 
SAP. Consequently, their results must be generalized with caution, as it may not 
translate to other populations.

5. Conclusion

In this review we have summarized studies that attempted to estimate the VF loss 
from structural assessment, mostly by OCT. It was demonstrated that it is possible 
to predict summary metrics as well as individual sensitivity threshold values for 
both 24-2 and 10-2 SAP. The use of such predictions can be valuable for glaucoma 
management, either when VF is not possible or to increase the number of data 
points available to assess progression. 

It is important to note that the evidence currently available does not warrant 
the substitution of SAP by DL predictions of the VF, but rather to complement it in 
the function assessment. This is due to the magnitude of prediction errors, even 
considering the advances achieved by the proposed methods. In particular, for 
advanced glaucoma, predictions tend to be higher than the measured values, under-
estimating the depth of the VF defect. It should also be noted that all AI algorithms 
could be influenced by the demographic characteristics of the population included 
in its development. For that reason, the performance of the AI algorithms should 
preferentially be demonstrated in external datasets, from a different geographical 
location, if possible, to demonstrate its generalizability. 

Future work should focus on improving the performance of the AI algorithms, in 
particular for more advanced disease, and on how to employ the predicted VF in 
clinical practice.
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