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Abstract

Detection of progression in glaucoma is crucial to avoid visual impairment and 
blindness. Throughout the clinical course of the disease, glaucoma patients can 
present very different trajectories, as some patients may remain stable using single 
eye drops whereas other patients may require surgical procedures to control the 
disease. Thus, the decision of intensifying a treatment by adding new eyedrops or 
performing a glaucoma surgery need to rely on precise data of true progression of 
the disease. In addition, assessing the velocity of progression can help to identify 
rapid progressors that are more prone to develop functional impairment. In clinical 
practice, we use both structural (retinography and optical coherence tomography) 
and functional (visual field) measurements, along with clinic-demographical data 
to evaluate if the patient is progressing. However, in some patients the correlation 
between structural and functional exams makes the detection of progression a 
challenge. Currently we are facing a growing use of artificial intelligence in medicine 
with the application of complex algorithms such as deep learning models. In this 
review, we summarize the findings from recent studies that investigated the use of 
artificial intelligence in detecting glaucoma progression.
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1. Introduction

Glaucoma is the leading cause of irreversible blindness worldwide and it is expected 
to affect over 118.5 million people in 2040.1 Patients with glaucoma can have visual 
impairment if the disease is not properly treated and followed, leading to worsening 
quality of life.2,3 Avoiding the progression of the disease requires compliance 
to treatment and adequate follow-up with regular consultations.4 In addition, 
procedures such as lasers and surgeries may be needed according to the severity of 
the disease and the rate of progression. Unfortunately, the detection of glaucoma 
progression can be challenging due to intrinsic variability of the devices commonly 
used in clinical practice, such as standard automated perimetry (SAP), retinogra-
phy, and optical coherence tomography (OCT).5-7 This variability can delay or even 
hamper the detection of progression in some cases, increasing the risk of the patient 
develop functional loss and visual impairment.

In clinic, when evaluating a patient with glaucoma, we must incorporate all 
clinical and demographic data, along with intraocular pressure (IOP) measurements, 
visual field information, retinographies, and OCT scans to decide if the disease is 
worsening. This task can be misleading, and the patient may be overtreated due 
to a false diagnosis of progression or even worse, be considered as stable when 
there is a true progression. Therefore, the use of artificial intelligence (AI) to help 
the clinicians in identifying true progressors has been increasing in the past years. 
Since the 1990s, several authors started to apply AI in glaucoma for both diagnosis 
and progression.8-11

2. Artificial intelligence and glaucoma progression

The pivotal studies performed in the 1990s have focused on AI performance to 
discriminate glaucomatous patients or to improve the detection of glaucoma 
progression using visual field parameters.8-11 None of these studies incorporated data 
from retinography or clinical data from the patients. Several factors have made the 
use of AI in glaucoma more common in recent years. First, in contrast to retinography, 
OCT scans offer objective numeric measurements from different optical structures 
(optic nerve neural rim, retinal nerve fiber layer [RNFL], and macular thickness). In 
addition, the widespread use of OCT and the increasing affordability of OCT devices 
contributed to expand the data available for research around the world. Second, 
electronic medical charts of thousands of patients from different centers offer a huge 
amount of real-world clinical and demographical data, which are essential for the 
development of AI algorithms. Third, the evolution of AI with the application of deep 
learning have also contributed to improve its performance.12 In this review, we will 
focus on the result of recent studies that applied the use of AI with visual field, ret-
inography, and OCT data to improve the detection of glaucoma progression.
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In 2012, Goldbaum et al. tested the ability of a machine learning classifier (MLC) 
using a Bayesian independent component mixture model to identify progression of 
glaucomatous visual field defects.13 The performance of AI was similar to visual field 
index (VFI), mean deviation (MD), and guided progression analysis (GPA) in glaucoma 
suspects but had better performance than GPA in glaucoma patients. In 2014, 
Siamak et al. employed MLC to detect glaucoma progression using longitudinal data 
from OCT RNFL and SAP.14 The study compared different MLCs and investigated the 
performance of the combination of both structural and functional measurements 
in detecting progression. They included patients with early to moderate glaucoma 
and found that RNFL parameters alone offered a similar performance compared to 
other models using RNFL and SAP. In another study, Siamak et al. compared the 
performance of a Gaussian mixture model and expectation maximization with the 
commercially available techniques from SAP, such as VFI and GPA, for the detection 
of glaucoma progression.15 They also compared the current model with previously 
described unsupervised learning-based progression detection algorithms such as 
the Bayesian independent component analysis mixture model. They found that 
the Gaussian mixture model using expectation maximization performed better 
than the commercially available SAP progression detection method. In addition, 
progression detection based on changes in the Gaussian mixture model performed 
slightly better than other models, while being less computationally complex.

In 2015, Siamak et al. developed an approach for the detection of glaucoma 
progression using a framework to find a vector that is representative of the 
progression direction of the sample population. Further analysis of these longi-
tudinal visual fields across the derived vector led to optimal disease progression 
detection.16 Compared to the other models mentioned in previous studies, this 
one had the advantage of requiring only longitudinal data for training, whereas 
the other models required both cross-sectional and longitudinal data. They found 
that progression detection using this framework performed slightly better than the 
previous models and was also more sensitive than SAP VFI and MD.

In 2018, Siamak et al. applied both MLC and statistical analysis to detect glauco-
matous progression in series of SAP exams.17 They included SAP exams from 2,085 
eyes of 1,214 subjects (normal and glaucoma suspects) and SAP exams from 133 
eyes of 71 glaucoma patients. SAP exams were collected 10 times over 10 weeks. 
They found that MLC analyses were able to detect progressing eyes earlier than 
other methods (MD, region-wise, and point-wise analyses) with the advantage of 
detecting more slowly progressing eyes than other methods.

Lee et al. investigated the performance of different MLCs (extra-trees and random 
forest models) to predict glaucoma progression in myopic eyes with normal-ten-
sion glaucoma (NTG) in a cross-sectional study. 18 They included 155 eyes from 155 
myopic NTG patients with axial length higher than 24.00 mm between the ages of 
20 and 40 years old. The extra-trees model achieved an area-under-ROC curves 
(AUC) of 0.881, higher than that of the random forest model (AUC of 0.811, P = 0.010). 
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The extra-trees model also outperformed all the clinical measurements for NTG 
progression, including average macular ganglion cell-inner plexiform layer (GCIPL) 
thickness and average RNFL thickness. 

3. Recent studies

With the advance of AI algorithms, recent studies are now applying deep learning 
neural networks to analyze data from glaucoma. Medeiros et al. have developed 
an innovative approach called machine-to-machine (M2M) using objective mea-
surements from OCT to train the deep learning algorithm rather than using human 
gradings.19,20 They used retinographies to train the algorithm to predict quantita-
tive measurements (RNFL and neuroretinal rim) from OCT. The advantage of these 
predictions is that, in general, they are more accurate than human gradings, which 
can suffer from low reproducibility. In 2020, Medeiros et al. performed a retrospec-
tive cohort study to evaluate the ability of deep learning using RNFL thickness 
obtained from retinographies to detect glaucoma progression as measured by 
RNFL from OCT longitudinally.21 They included a total of 83,123 pairs of fundus 
photographs and OCT images collected during 21,232 visits from 8,831 eyes of 5,529 
patients with glaucoma or glaucoma suspects. A significant correlation was found 
between change over time in predicted and observed RNFL thickness. The RNFL 
predictions showed an AUC of 0.86 to discriminate progressors from nonprogres-
sors. This study was the first to apply deep learning to detect glaucoma progression 
using fundus photographs.

Siamak et al. developed an analytical pipeline including linear transforma-
tion, manifold learning, and unsupervised clustering to improve the detection 
of glaucoma progression and investigate the patterns of visual field loss.22 They 
applied a combination of linear and nonlinear statistical methods to evaluate both 
local patterns and global defects from SAP exams and created an explainable and 
clinician-friendly tool with multiple layers of glaucoma knowledge on a simple 
interpretable 2-dimensional map, which they named as dashboard. After building 
the dashboard, they were able to identify 32 nonoverlapping clusters. Each cluster 
on the dashboard corresponded to a particular global functional severity, an 
extent of visual field loss into different hemifields, and characteristic local patterns 
of visual field loss. The dashboard developed using AI included a large spectrum of 
visual field patterns that can aid the clinician to classify the severity of the disease 
and monitor glaucoma progression.

One of the limitations of OCT and SAP data to monitor glaucoma is that change 
may occur only after a significant loss of retinal ganglion cells. Therefore, novel 
methods to discover earlier biomarkers of disease have been reported. Within 
these approaches, the detection of apoptosing retinal cells (DARC) from Cordero 
et al. looks promising and is currently in a Phase 2 clinical trial.23 This technique 
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uses a molecular marker labelled annexin A5, which has a high affinity for cells 
undergoing stress and in the early stages of apoptosis. A previous study reported 
that the number of DARC positively stained cells seen in a retinal fluorescent image 
could be used to assess glaucoma disease activity. 23,24 Recently, Normando et al. 
applied a convolutional neural network (CNN) to aid the detection of DARC spots. 
The study included images from 40 healthy controls and 20 glaucoma patients. 
The CNN-aided algorithm was trained and validated using manual counts from 
control subjects, and then tested on glaucoma eyes. They reported that the model 
had 97.0% accuracy, 91.1% sensitivity and 97.1% specificity to detect spots when 
compared to manual grading of controls. In addition to that, it demonstrated 
85.7% sensitivity, 91.7% specificity with AUC of 0.89, and a significantly greater 
DARC count in glaucoma patients who later progressed, based on RNFL thickness 
measurements from OCT. 

Nouri-Mahdavi et al. performed a prospective cohort study with moderate and 
advanced glaucoma patients to evaluate if the combination of baseline and longi-
tudinal OCT (RNFL and macular ganglion cell-inner plexiform layer [GCIPL]) mea-
surements and demographic data could predict visual field progression using both 
MLC and elastic net logistic regression analysis (ENR).25 They included a total of 104 
eyes from 104 patients with ≥ 3 years of follow-up and ≥ 5 visual field examinations. 
They found that the best MLC predictors included baseline superior hemimacular 
GCIPL thickness and GCIPL change rates (AUC = 0.81). For ENR, rates of change of 
superotemporal RNFL sector and GCIPL change rates were the best predictors 
(AUC = 0.79). Thus, the use of AI could help to predict visual field progression based 
on baseline and longitudinal structural data from OCT measurements. This finding 
is especially important in patients with moderate and advanced damage, in which 
visual field loss could decrease the quality of life more drastically.26

Hood et al. have previously demonstrated that using an individualized region of 
interest (ROI) approach can outperform instrument in-built defined global peripap-
illary RNFL thickness measurements to monitor glaucomatous progression.27 Bowd 
et al. have applied an unsupervised deep learning model to detect progression 
(defined by optic disc stereophotographs) from OCT cube scans using ROI approach 
and compared the results to RNFL thickness measurements derived from the same 
cube scans.28 They included a total of 44 progressing glaucoma eyes (confirmed by 
stereophotograph), 189 nonprogressing glaucoma eyes and 109 healthy eyes that 
were followed for ≥ 3 years with ≥ 4 visits using OCT. The sensitivity for detecting 
change in progressing eyes was greater for the deep learning models than for global 
RNFL thickness measurements.  

In a retrospective cohort, Shuldiner et al. evaluated the ability of different MLCs 
to detect fast visual field progressors (MD reduction > 1 dB/year).29 They included a 
total of 175,786 SAP exams (22,925 initial ones) from 14,217 patients who completed 
5 reliable visual fields. Among the MLCs, the support vector machine model (AUC 
0.72) presented the highest accuracy to predict progression. Interestingly, models 



Table 1. Recent studies on artificial intelligence and glaucoma progression

Author 
(year) Purpose Sample size Results

Medeiros et 
al. (2019)

To train a DL algorithm 
from OCT RNFL data to 
quantify glaucomatous 
structural damage on 
optic disc photographs.

32,820 pairs 
of optic disc 
photographs and 
OCT RNFL scans 
from 2,312 eyes of 
1,198 participants

AUC for discriminating 
glaucomatous from 
healthy eyes with the DL 
predictions was 0.944.

Thompson 
et al. (2019)

To train a DL algorithm 
from OCT BMO-MRW data 
to quantify glaucomatous 
structural damage on 
optic disc photographs.

9,282 pairs 
of optic disc 
photographs and 
OCT optic nerve 
head scans from 
927 eyes of 490 
subjects

AUC for discriminating 
glaucomatous from 
healthy eyes with the DL 
predictions was 0.945.

Medeiros et 
al. (2020)

To investigate whether 
predictions of RNFL 
thickness obtained from 
a DL model applied to 
fundus photographs 
can detect progressive 
glaucomatous changes 
over time.

33,466 pairs 
of fundus 
photographs 
and OCT images 
collected during 
7,125 visits from 
1,147 eyes of 717 
patients

RNFL predictions 
showed an AUC of 0.86 to 
discriminate progressors 
from nonprogressors.

Yousefi et 
al. (2020)

To develop an AI 
dashboard to monitore 
glaucomatous functional 
loss.

13,231 VFs from 
8,077 subjects 
were included 
to develop the 
AI dashboard. 
Longitudinal VFs 
from 287 eyes 
with glaucoma 
were used to 
validate the 
models

The specificity for 
detecting ‘likely 
nonprogression’ was 
94% and the sensitivity 
for detecting ‘likely 
progression’ was 77%.

Normando 
et al. (2020)

To develop an automatic 
convolutional neural 
network-aided method 
of DARC spot detection 
to enable prediction of 
glaucoma progression.

40 healthy control 
and 20 glaucoma 
patients

85.7% sensitivity and 
91.7% specificity with 
AUC of 0.89, using OCT 
RNFL measurements 
as reference standard 
for progression at 18 
months.
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Author 
(year) Purpose Sample size Results

Nouri-
Mahdavi et 
al. (2021)

To test the hypothesis 
that VF progression can be 
predicted from baseline 
and longitudinal OCT 
structural measurements.

104 eyes from 
104 patients 
with ≥ 3 years of 
follow-up and ≥ 5 
VF examinations

Machine learning 
predictors from baseline 
superior hemimacular 
GCIPL thickness and 
GCIPL change rates had 
AUC=0.81.

Bowd et al. 
(2021)

To compare change 
over time in eye-specific 
OCT RNFL regions of 
interest maps developed 
using unsupervised 
DL to RNFL thickness 
for the detection 
of glaucomatous 
progression.

44 progressing 
and 189 
nonprogressing 
glaucoma 
eyes (by 
stereophotograph 
assessment) and 
109 healthy eyes.

Sensitivity for detecting 
change in progressing 
eyes with DL regions of 
interest was 0.90 and 
specificity for detecting 
not likely progression in 
nonprogressing eyes was 
similar 0.92.

Shuldiner 
et al. (2021)

To assess whether 
ML algorithms can 
predict eyes that will 
undergo rapid glaucoma 
progression based on an 
initial VF exam

175,786 VFs 
(22,925 initial 
VFs) from 14,217 
patients who 
completed ≥ 5 
reliable VFs.

The support vector 
machine model (AUC 
0.72) most accurately 
predicted rapid 
progression when trained 
on initial VF data.

Saeedi et 
al. (2021)

To develop and test 
machine learning 
classifiers for determining 
visual field progression.

90,713 visual 
fields from 
13,156 eyes were 
included.

Machine learning 
classifiers accuracy 
ranged from 87% to 91% 
with sensitivity ranging 
from 0.83 to 0.88 and 
specificity from 0.92 to 
0.96.

Dixit et al. 
(2021)

To assess the 
performance of a 
convolutional long 
short-term memory 
neural network for 
detecting glaucoma 
progression based on a 
longitudinal data set of 
merged VF and clinical 
data.

11,242 eyes with ≥ 
5 reliable VFs and 
baseline clinical 
data (cup-to-disc 
ratio, central 
corneal thickness, 
and intraocular 
pressure)

The convolutional long 
short-term memory 
neural network 
demonstrated 91% 
to 93% accuracy. The 
model that was trained 
on both VF and clinical 
data presented an AUC 
ranging from 0.89-0.93.

DL: deep learning; OCT: optical coherence tomography; RNFL: retinal nerve fiber layer; AUC: 
area under receiver operating characteristic curve; BMO-MRW: Bruch’s membrane open-
ing-minimum rim width; AI: artificial intelligence; VF: visual field; ML: machine learning; 
DARC: Detection-of-Apoptosing-Retinal-Cells; GCIPL: ganglion cell-inner plexiform layer

Artificial intelligence and glaucoma progression 7



R.Y. Abe, F.A. Medeiros, V.P. Costa8

trained on data from the first two visual fields performed no better than models 
trained on the initial visual field alone. Thus, MLCs presented modest accuracy to 
predict visual field progression using a single SAP initial exam. However, the authors 
emphasize that incorporating additional clinical data to the current model could 
enhance its accuracy.

Saeedi et al. compared 6 different MLCs (logistic regression, random forest, 
extreme gradient boosting, support vector classifier, CNN, fully connected neural 
network) to detect visual field progression.30 In this study, a total of 90,713 
visual fields from 13,156 eyes were included. Although they found that MLCs had 
modest performance, like conventional algorithms (linear regression of MD and 
VFI, Advanced Glaucoma Intervention Study and Collaborative Initial Glaucoma 
Treatment Study algorithms, and pointwise linear regression), the MLCs were less 
subject to class bias, were more balanced, and probably more applicable to a wider 
range of glaucoma patients with different severities of damage.

Dixit et al. evaluated glaucoma progression using a MLC algorithm trained over 
a large dataset containing visual field and clinical data.31 An innovative approach 
of this study was to identify if a combination of both functional (visual field) and 
clinical data could improve glaucoma progression detection using a CNN. This retro-
spective study included 672,123 SAP exams from 213.254 eyes and 350 437 samples 
of clinical data (cup-to-disc ratio, central corneal thickness, and IOP). They found an 
accuracy of 91–93% for the CNN when assessing both visual field and clinical data, 
suggesting that it is possible to improve the ability to detect glaucoma progression 
when combining clinical data to visual field parameters.31 A summary of the studies 
mentioned above can be found in Table 1.

4. Limitations and future perspectives

Monitoring for structural or functional changes is crucial in the management of 
both glaucoma suspects and those with confirmed disease. Prompt detection of 
progression can minimize the risks of the patient developing visual impairment, 
especially in cases with advanced disease or in cases in which central visual field is 
threatened. The application of several different AI approaches has provided satis-
factory accuracy in the detection of progression.12 Currently, in clinical practice, we 
combine both structural (fundus photographs and OCT) and functional (SAP) data 
as well as all clinical (IOP and visual acuity measurements) and demographic data 
available to define whether the patient is progressing or is at risk for progression. 
However, in this review we observed that only a few papers investigated the 
combination of all parameters (structure, function, and clinical data) in algorithms 
created to detect glaucoma progression. Furthermore, despite the growing amount 
of research using AI in glaucoma, none of the previously mentioned algorithms are 
currently available for routine use in clinical practice. One of the barriers to this 
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adoption is the complexity of the AI algorithms, which is not a familiar language 
for most of the clinicians.32 The incorporation of these new AI developments 
requires the interaction with manufactures to create in-built software that can be 
user-friendly for the clinician.33 Currently, we have a huge amount of medical data 
available in clinics and hospitals that can be shared with increased velocity through 
internet cloud systems. The use of more representative datasets with multiethnic 
populations from real-world scenarios could help the development of AI algorithms 
designed for the detection of glaucoma progression.34 However, to do so, collab-
orative networking for data collection, infrastructure capacity to storage, trained 
specialists to process and analyze the data and a broader discussion over regulatory 
laws and cybersecurity are needed.32,35
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